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Abstract: In order to study the hydrofoil cavitation characteristics in the process of accelerated flow, detached eddy
simulation (DES) and homogeneous cavitation model were employed to simulate the unsteady flow around NACA66 model
at attack angle of 5.8°. The cavitation number was 0.99 and the corresponding Reynolds number was 8 x 10°. The
characteristics of cavitation evolution and flow field structure were obtained in the case of two different accelerations (a, =
5m/s’,a, =2.5m/s”). Different numerical simulation results were obtained by studying different accelerations. Cavitation
was first born in the leading edge of the hydrofoil, and grew after a period of time and finally separated. Then the cavitation
in the leading edge was reduced and the cavitation at the tail of the hydrofoil was increased and backward spread until
rupture. Cavitation was first generated at around 0. 6 times of total acceleration time and finished a cycle at about 1. 12
times of total acceleration time. Oscillation ranges of the lift coefficient became large and the range of the drag coefficient
was small with the increase of acceleration. Using small acceleration, the cavitation developed more slowly. The simulation

results obtained by DES turbulence model were more close to the experimental values than those obtained by homogeneous

cavitation model. The research results can provide reference basis for cavitation characteristics study of hydraulic

mechanical startup process.
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0 Introduction

Cavitation is a complex phenomenon of gas-liquid
two-phase flow which often develops in the fluid
machinery and can easily cause decline in the
hydraulic performance, vibration, noise, erosion and
other problems. Meanwhile, it is also related to the
unsteady problems of two-phase flow and the study of
unsteady viscous flow in hydraulic machinery is
pervasive. Unsteady flow occurs when the boundary
conditions change, for instance, the start-up and stop
process of hydraulic rotating machinery. The study on
hydrofoil

process of formation, development and collapse, has

cavitation characteristics, including the

been premised for the hydraulic machinery cavitation.
The domestic and foreign researchers have done

intensive studies on the two aspects mentioned above.

SORIA, et al'' | made experimental measurements of

accelerated flow on NACAOO15 hydrofoil at attack
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angle of 30° using the advanced PIV technology. The
results validated that different accelerations have an
important effect on the shear stress and vertex structure
during the start-up process. FREYMUTH'?' obtained
images of complex vertex structure by flow visualization
to make a parametric study of air flow on NACAOO15
hydrofoil with a constant acceleration. HUTTON, et
al”! | found that when attached cavitation appears,
vertex cavitation which can lead to cavitation clouds
occurs in the downstream flow. The unsteady cloud
cavitation flow structure of 2D static hydrofoil was
studied by KUBOTA , et al'*!  and they found that the
cavitation cloud which has a vorticity peak in its core is
composed of many cavitation bubbles. To solve the
problem of numerical simulation of the large separated
flow, SPALART, et al”® %, proposed DES model and
analyzed the advantages compared with the LES model.
WU, et al'”’, used finite volume method to carry

numerical simulation for accelerated flow of NACA0015
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hydrofoil at large attack angles and obtain details of
structure and development of transient flow during and
after the acceleration process. To make numerical
calculations on the uncompressed and unsteady flow
caused by the transient start-up, HAO, et al®* =%
adopted finite volume method which is based on the
dynamic mesh and the results reveal the structure and
development of unsteady flow around hydrofoil with
different accelerations. HUANG, et al'' | studied the
application of DES method in the -calculation of
cavitation flow and found the prediction of cavitation
flow around hydrofoil under high Reynolds number is
logical ,which can simulate the unsteady characteristics
of cavity form and the unsteady details of alternate
shedding cavities accurately. LI, et al''"’| made a
comparison of RANS and DES methods in the
simulation of the stall properties of hydrofoil and drew
the conclusion that DES method is better.
HUITENGA, et al'?>""' analyzed the 3D flow field
structure and torque transfer of a certain pump and
turbine coupling during the start-up process and
proposed the method of hydraulic optimization design

about the conditions of accelerated flow. LIU, et al''™*’

studied the transient characteristics of double-suction
pump during the start-up with closed valve and found
the simulation of all circuit model is closer to the
experiment result.

This paper makes a comparison of simulation and
experimental results of NACAOO15 hydrofoil at large
attack angles and verifies the DES method is applicable
to the accelerated flow condition. NACA66 hydrofoil is
selected as a research object. Finite volume method is
used in the numerical calculation of the hydrofoil
cavitation under two accelerated flow conditions to
obtain the flow structure and development process,and

lay a foundation for the design of hydraulic machinery.
1 Numerical simulation and verification

1.1 Turbulent model

To observe and capture the development of various
vertexes in the boundary layer during the acceleration
process preferably, DES ( detached eddy simulation )
model is applied to make numerical simulation. DES is
a mix turbulent model which combines the LES (large
eddy simulation ) and RANS ( Reynolds averaged

Navier-Stokes). It can greatly lower the calculation

cost that LES needs and improve the analysis ability for
turbulence. Moreover, DES model gives consideration
to the low requirements for the grids at the boundary as
RANS.

The DES model based on the SST &k — w is adopted
for this paper. The calculation switches from SST k — @
to LES model when the turbulence length L, predicted
by SST k£ — w is larger than the size of partial grids.
And the turbulence length L, is replaced by the size of
partial grids A to calculate the dissipation in the &

equation
e=B ko =k"/L—k"/(C,A)
(ChA<L) (1)
Therefore,, the SST model is corrected as follows.

e=B" kF,,

which F,,. =max (L 1 ) (2)

es C A
where e—dissipation rate

A—maximum local grid spacing

L,—length scale of turbulence

C,.—0.61 B*—0.09
1.2 Cavitation model

The homogeneous flow model is used, i. e, the

multiphase flow in which the velocity fields of gas and
liquid are same. The Zwart model based on the
Rayleigh-Plesset equation is adopted. The effect of the
density of gas core in water on evaporation is
considered. The equation to calculate the mass

transferred among the cavitation unit volumes is as

follows.
3r,.(l-a)p, [2p,-p
Fe nuc 4 14 “~ 4 ( < V)
Ry 3 op psp
m =
3ap, 2 p-p,
Fo—— = (p>p,)
Ry 3 p p=p
(3)
where a,—gas volume fraction

p,—vapor pressure , Pa
p—Ilocal environment pressure , Pa
p,—water vapor density ,kg/m’
p,—liquid density , kg/m’
F,=50;F =0.01;r,, =5x10"*;R, =10 "° m.
1.3 Verification of DES model
According to the experiment indocument [ 1],
NACAQO015 is selected and placed on a plane which is
800 mm long and 200 mm wide. The attack angle is
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30° and the chord is 80 mm. The inlet flow is
accelerated to 100 mm/s at different accelerations and
the corresponding Reynolds number is 8 000. The 2D
sketch of the model is in Fig. 1.

Upper wall

Inlet edge %
80

Lower wall

Outlet edge

200 mm

Fig.1 Sketch of two dimension model

ICEM software is used to divide structured grid.
Stretch a layer of grid from the 2D hydrofoil to generate
3D structured grid. The amount of total grids is
400 000. Grids around the hydrofoil are refined and
the value of Y is controlled to be 0 ~18. Fig. 2a is
the velocity field of simulation at one moment after the
start-up and the corresponding experimental result is in
Fig. 2b. The moment is t/t, (t means a certain time
of acceleration ). The

and ¢ means the time

acceleration is @ =100 mm/s” and Reynolds number is

Re =8 000.

Fig.2 Comparison of numerical and experimental results

And ¢, =U_/a is the time scale of the acceleration
process and U, = 100 mm/s is the velocity after
accelerating. And ¢, is 1s corresponding to accelerated
flow whose acceleration is @ = 100 mm/s’. The specific

acceleration process can be depicted as follows.

=at (tﬁw)

v,
“ (4)
v, =100 (t>%) )

It can be found from Fig. 2 that the position and
development of the vertex in the simulation is in accord
with that in experiment. It is verified that the DES
model is reliable for the prediction of the characteristics

of accelerated flow around hydrofoil.
2 Physical model and boundary conditions

2.1 Physical model
A NACAG66 hydrofoil is used to reveal the cavitation

development of hydrofoil in accelerated flow. The
geometry of this model is in accord with the case in
The length of chord is

150 mm and wingspan is 192 mm. The nominal angle

. 15-16
Leroux’ s experlment[ n

of attack a in the experiment is (6.0 £0.2)° and it is
selected 5. 8° in the simulation. The specific model is
illustrated in Fig. 3.

\\{23‘;

Fig.3 NACA66(mod) model

ICEM software is used to generate mesh and the type
of grid is C. Furthermore, it is 100 x 27 orthogonal
grid. It should be noted that the sidewall grid of the
hydrofoil must be refined to control the value of Y* to
be ranged from 0.03 to 6.45. The specific mesh is
illustrated in Fig. 4.

Fig.4  Grid around hydrofoil

2.2 Boundary conditions

The steady inlet velocity is used as reference velocity
v,,=5.33 m/s when setting boundary conditions. The
outlet pressure is p, =17 636. 4 Pa. Reynolds number
is Re =8 x 10° and cavitation number o is 0.99. The
initial velocity is v, = 0.33 m/s in the acceleration
process. And it is accelerated to v, =5.33 m/s with

different accelerations. Two different accelerations are

T

acl

selected as follows: a; =5 m/ s

2.5m/s*, T

s " a2

’ :ls’a2=

=2 s. The total computing time is 4 s

and time step is 4 x 10 ™" s. The specific accelerating

)
)

process can be depicted as follows.

0,=0.33+ar (1=

U s |w

b, =5.33 (¢>
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3 Simulation results and discussion

3.1 Comparison of simulation and experiment
result with constant inlet velocity

To illustrate that the DES turbulent model and Zwart
cavitation model are reliable in the simulation of
NACAG66 ,the inlet velocity is set as 5. 33 m/s and the
simulation of cavitation characteristics is at constant
inlet velocity. The comparison results of simulation and
experiment is as illustrated in Fig. 5. And T means the
total acceleration time.

It could be verified that numerical simulation can
accurately predict the development of cavitation cloud

over acycle. Cavity develops slowly from 7/14 to

(g) 6177
Fig.5 Comparison of numerical and high speed photography results

3.2 Development of cavitation with different
accelerations

Fig. 6 and 7 reveal the development of cavitation
within the hydrofoil at different times with different
accelerations, including the processes of inception,
development, collapse and rebirth. At these two kinds
of accelerated flows, cavity firstly appears at the leading
edge of hydrofoil and develops after some time. Then it
separates at the trailing edge so that the cavity reduces
at the leading edge. And cavity at the trailing edge
increases and derives aback until collapses.
Meanwhile , development of cavitation described above

appears repeatedly during the start-up and time interval

- = <

(b) T/Tper=1

(8) T/Te=0.66

(b) 3714

() 4T/7

5T/14. The surface of the sheet cavity is perturbed and
part of it fractures, as illustrated in Fig. 5d. And
Fig. 5e reveals that the cavity develops into cavity
cloud by entrainment which collapses in Fig. 5f. Sheet
cavitation restarts to develop around the leading edge
after collapse of the secondary cavity for another cycle.
Based on the reliability analysis of Fig. 5, then simulate
the accelerated flow around hydrofoil. The results of
steady cavitation flow with v, =0. 33 m/s is used as the
initial flow field to compute. Meanwhile, considering
that 3D computation takes too much time ,the 3D model
is simplified into 2D. When CFX is used to compute,
stretch a layer of grid along the Z axis to analyze the

results.

== =

(a) 714

() 51114

() 5717

mr

is very short.

Through further analysis of Fig. 6, during the
acceleration process with acceleration ¢, = 5 m/s”,
acceleration time T, =1 s and total acceleration time
T =4 s, cavity firstly appears at T'=0. 66 s and the first
period finishes at T'=1. 14 s. The process repeats until
T=4s.

As it is illustrated in Fig. 7, during the acceleration
process with acceleration a, = 2.5 m/s’, acceleration
time T, =2 s and total acceleration time T =4 s, cavity
firstly appears at T'=1. 22 s and the first period finishes
at T=2.24 s. The process repeats until T =4 s.

The time is made dimensionless to discovery

(€) T, =1.04

(d) Ty =1.1

(&) TVTyy=1.14

Fig.6 Cavitation process at different times
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characteristics of cavitation development with different
start-up accelerations preferably. Through analysis, it

can be found that during these two acceleration

(b) T/Tpep=1

() TITy:;=0.61

processes , the cavity firstly appears around 7/T, =0. 6
and the first cycle finishes around 7/7, =1. 12.

() T/T,,=1.08

(d) T/Te=1.1

(e) TiTyp=1.12

Fig.7 Cavitation process at different times

3.3 Velocity distribution at different accelerations

Velocity distribution around hydrofoil at different
accelerations and moments is given in Fig. 8. It can be
found that DES model can effectively simulate the
velocity distribution around hydrofoil and change rule
of vortices. It is distinct that vortexes around the

trailing edge develop more sufficiently by comparison.

As is illustrated in Fig. 8, during the initial phase,small

vortexes appear at the leading edge because of main
flow and back jet flow. However, large clock wise
vortexes are generated at the trailing edge under the
effect of intense back jet flow. And as time goes on,
vortexes around leading edge disappear and enhance at
the trailing edge. Meanwhile, the vortexes are driven
by main flow to the downstream of hydrofoil until

disappear.

(d) TVT,, =1.00.a=2 5m/s?

(&) T/Ty =1.08.0=2.5m/s2

(D) T/T=1.10.a=2.5m/s?

Fig. 8 Velocity field at different times

3.4 Lift and drag characteristics of hydrofoil at
different accelerations

It can be found that change tendency of lift

these two different accelerations is

in Fig.9. The lift

coefficient descends to a small value rapidly and makes

coefficient at

coincident, as 1is illustrated

a smooth transition to 7,. And it achieves to the

maximum around this point. Then the lift coefficient

45
40 F
3.5 F

£ 30}
4

(=]
i
T

20F

Lift coeffici
&

1.0 b
B3 F
0F

1.5 20 25 30 35 40
Time/s
(a) a;=5 m/s®

0 05 10

fluctuates  periodically. ~ The fluctuation of lift
coefficient is ranged from — 0.18 to 1.42 for the
former accelerated flow and the range is —0.05 ~1.4
for the latter. The lift fluctuation range is wider with
increasing acceleration.

From Fig. 10, it can be found that change tendency
of drag coefficient at these two different accelerations is

coincident. The drag coefficient descends to a small

45¢
40k

e
L
T

Lt e
===
T

Lift coefficient

=
T

0 05 10 15 20 25 30 35 40
Time/s
(b) @,=2.5 m/s?

Fig.9 Lift coefficient at different times
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value rapidly and makes a smooth transition to T,,.
And it achieves to the maximum around this point.
Then the drag coefficient fluctuates periodically. The
fluctuation of drag coefficient is ranged from -0.04 to
0.3 for the former accelerated flow and the range is
—0.08 ~0. 3 for the latter. The drag fluctuation range
is smaller with increasing acceleration.
3.5 Comparison of vapor volume fraction at
different accelerations
The total vapor volume fraction on the hydrofoil

surface in different accelerated flows and at different

moments is as illustrated in Fig. 11. The vapor volume

fraction begins to increase when a, =5 m/s*, T =0. 66 s
and achieves to the maximum when 7 =1.08 s. And
the process costs 0.42 s. Then the volume fraction
periodically changes irregularly in the future. In
addition , the vapor volume fraction begins to increase
when a, =2.5 m/s’, T =1.22 s and achieves to the
maximum when T =2.23 s. And the process costs
1.01 s. By comparison, it can be found that
development of the vapor volume fraction from zero to
the maximum is slower at lower accelerations and takes

more time.

Drag coefficient
[=]
=
T

0 05 10 15 20 25 3.0 35 40
Time's
(b) a,=2.5 m/s?

Fig. 10  Lift coefficient at different times

20F
515t
=
=}
o
g 1.0
=
£
=05
ot
L A TR S il .
0 05 10 15 20 25 30 35 40
Time/'s
(a)a,=5 m/s?
1.4

]

1.0=100
8.010
6.0

by

Vapor volume fraction/%

2.0=107F

W
=k

Time/s
_ 5
(a)a;=3 m/s*

Fig. 11

4 Conclusion

(1) Through the comparison between simulation and
experiment, it is verified that detached eddy simulation
and Zwart model can predict hydrofoil cavitation for
accelerated flow accurately and provide reference for
the study on hydraulic machinery cavitation during
start-up.

(2) During start-up, cavity firstly appears at the
leading edge of hydrofoil and develops after some time.
Then it separates at the trailing edge and reduces at the
leading edge. Meanwhile, cavity at the trailing edge
increases and derives aback until collapses. The cavity
always firstly appears around 7/7T, =0. 6 and the first
cycle finishes around 7/7T,, =1. 12.

L4107

(=]

<10

~—
'IU L
-5

<107
<107}

& o oo
L=~ 2 -=- T - U - |
=

Vapor volume fraction/%

&)
L=}
L=1

Time/'s
(b)a,=2.5 m/s?

Vapor volume fraction at different times

(3) The vortexes around the trailing edge develop
more sufficiently with decreasing acceleration. Small
vortexes at the leading edge are owing to the effects of
main flow and back jet flow. But large clockwise
vortexes around trailing edge are caused by the intense
back jet flow. Meanwhile, as time goes on, vortexes
around leading edge disappear and enhance at the
trailing edge.

(4)The change tendency of lift and drag coefficients
are coincident at different accelerations.  The
coefficient descends to a small value rapidly and makes
a smooth transition to 7,. And it achieves to the

maximum around this point. Then the -coefficient

fluctuates  periodically. With  the

increasing

acceleration the lift fluctuation range is wider,while the
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drag range is smaller.

(5) Development of the vapor volume fraction from

zero to the maximum is slower at lower accelerations

and takes more time.
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Numerical Simulation of Accelerated Flow on Hydrofoil Cavitation

Shi Weidong Zhang Junjie Zhang Desheng Zhao Ruijie Zhang Lin
( National Research Center of Pumps, Jiangsu University, Zhenjiang 212013, China)

Abstract; In order to study the hydrofoil cavitation characteristics in the process of accelerated flow,
detached eddy simulation ( DES) and homogeneous cavitation model were employed to simulate the
unsteady flow around NACA66 model at attack angle of 5. 8°. The cavitation number was 0. 99 and the
corresponding Reynolds number was 8 x 10°. The characteristics of cavitation evolution and flow field
structure were obtained in the case of two different accelerations (@, =5 m/s”,a, =2. 5 m/s). Different
numerical simulation results were obtained by studying different accelerations. Cavitation was first born in
the leading edge of the hydrofoil, and grew after a period of time and finally separated. Then the
cavitation in the leading edge was reduced and the cavitation at the tail of the hydrofoil was increased and
backward spread until rupture. Cavitation was first generated at around 0.6 times of total acceleration
time and finished a cycle at about 1. 12 times of total acceleration time. Oscillation ranges of the lift
coefficient became large and the range of the drag coefficient was small with the increase of acceleration.
Using small acceleration, the cavitation developed more slowly. The simulation results obtained by DES
turbulence model were more close to the experimental values than those obtained by homogeneous
cavitation model. The research results can provide reference basis for cavitation characteristics study of
hydraulic mechanical startup process.

Key words: hydraulic machinery; hydrofoil cavitation; accelerated flow; detached eddy simulation
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