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Abstract: An on-site field experiment, which includes five nitrogen fertilizer application rate treatments, four phosphorus
fertilizer application rate treatments and two summer maize cultivars treatments, was conducted at agricultural experimental
station of Northwest A&F University during 2011—2014. Summer maize canopy spectral reflectance and above-ground dry
matter accumulation (ADMA) were measured at the huge bellbottom stage, silking stage, filling stage and maturity stage of
summer maize. 21 canopy vegetation indexes of hyperspectral remote sensing in 2011 and 2013 were chosen to establish
liner, logarithmic, quadratic and exponential regression relationship between ADMA and canopy spectral parameters for
each cultivar. Different regression models were applied to establish the relationship between spectrum vegetation indexes
and summer maize ADMA. Three models with high coefficients and F values at each growth stage were chosen to verify root
mean square error and relative error with data of canopy spectral reflectance and ADMA in 2012 and 2014 separately. The
smallest root mean square error and relative error models were chosen as the best models for estimation ADMA of maize.
The results show that, at the huge bellbottom stage, filling stage and maturity stage of maize, spectrum vegetation indexes
for the best fitting regression relationship models with ADMA were GNDVI, PSSRc, NDVI4 and DI. These models could be
used as the best models for the estimation of summer maize above-ground ADMA.
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0 Introduction

Crop canopy spectral analysis is recognized as a non-
destructive testing technology of remote sensing which
offers an opportunity for indicating information of

vegetation  properties, photosynthetic ~ biomass

accumulation and  other indexes after using

hyperspectral technology to monitor physical and
chemical parameters of crop by constituting the
vegetation index of linear and nonlinear combination of
hyperspectral data''’.

Above-ground dry matter accumulation ( ADMA) is
the basis for the formation of crop yield during crop
crop dry matter

growth period. Estimation of

accumulation by  hyperspectral remote  sensing

vegetation index makes remote sensing for dynamic

monitoring of crop growth and yield inversion come
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true. Depending on normalized difference vegetation
index (NDVI), ZHANG et al. '* established a model
for above-ground biomass in Poyang Lake region.
WANG"' using the components of biomass (leaves and
the quality of stem and pod) of rape established
regression model with RVI and NDVI respectively.
SHIBAYAMA et al.

R,y ) simulation to simulate and predict the dry mass

) adopted the ratio index (R,,q/

of double cropping of rice well. The studies of SONG
et al. "' have shown that RVI ( R,,/R,,) can
simulate soybean’ s fresh matte accumulation of the
over ground part. Based on the studies of winter wheat
biomass model (WBM), ZHUANG et al. "® believes
that using NDVI transformation model of satellite
images can better simulate biomass of winter wheat,
and can accurately obtain different levels of biomass

growing information in a large area. The studies of

Supported by National Hi-tech Research and Development Program of China (863 Program) ( Grant No. 2013AA102902), and National Natural

Science Foundation of China ( Grant Nos. 31571620, 31071374 )

Corresponding author: Li Jun, Professor. E-mail: junli@ nwsuaf. edu. cn. Tel: +86 —13002963615



2 TRANSACTIONS OF THE CHINESE SOCIETY FOR AGRICULTURAL MACHINERY 2016

CHU et al. 7%

aboveground biomass of the Qinghai-Tibet region

indicated that estimating the
through varieties of vegetation index models are
possible. These studies were based on the spectral
simulation to estimate biomass at lower biomass
conditions, but the applicability of the model is
reducing at a higher biomass conditions due to
spectrum model saturation ="

In summary, an increasing number of scholars deem
that above-ground biomass of different kinds of
vegetation can be predicted through varieties of
vegetation index models and have made considerable
achievements, while researches on spectrum model to
estimate high biomass are relatively small, especially
in summer corn. This article predictes and simulates
above-ground biomass of summer cormn, then
simultaneously set and verifies summer corn above-
ground dry biomass regression model based on
vegetation index through different band combinations of
hyperspectral ~ vegetation index and normalized
difference vegetation index. The specific objectives of
this study are to provide evidence for hyperspectral
remote sensing of summer corn growing and provide a
realistic foundation for using spectral vegetation index

to estimate higher biomass.

1 Material and methods

1.1 Site description and experimental design

A field experiment of summer maize growing
hyperspectral remote sensing was conducted from 2011
to 2014 at a site in Northwest A&F University North
Campus (34°29'N, 108°06' E; elevation 400 m)
where is the warm temperate semi-humid climate in
this area. The soil at the study site is Hongyou soil
which has a silt loam texture. Soil organic carbon
content, total nitrogen, available nitrogen and available
phosphorus at 0 ~ 20 ¢m depth were 10.48 g/kg,
1.20 g¢/kg, 36.48 mg/kg, and 12.49 mg/kg
respectively.

Different nutrient levels of nitrogen, phosphorus and
varieties of summer maize were set at the study site.
We took Split-split Plot Design and applied multi-year
fertilizer treatments researches in the field, arranging
nitrogen as main treatment, phosphate as secondary

treatment and variety as tertiary. In this experiment,

five treatments (NO, N1, N2, N3, N4) of nitrogen

fertilizer were designed which applied 0, 75, 150,
225, 300 kg/hm® nitrogen respectively, and 60% of
the total nitrogen fertilizer as basal, 40% as top
dressing. Set 4 treatments (PO, P1, P2, P3) of
phosphate which applied 0, 60, 120, 180 kg/hm’P, 0,
respectively, and phosphate fertilizer was applied at
once as base fertilizer. Two tested summer maize were
Yuyu 22 ( horizontal leaf type) and Zhengdan 958
( compact type) , which at a density of 52 500 plants/hm’
and 67 500 plants/hm’ respectively.
1.2 Parameter and determination methord
1.2.1 Measurement of corn reflectance

Summer maize canopy spectral reflectance were
measured  with  ASD  fieldSpec3
instrument at the huge bellbottom stage ( July 15),

hyperspectral

silking stage ( August 2), filling stage ( August 17)
and maturity stage ( September 10 ) of maize at
10:30—13.:30 on the cloudless, windless weather.
Three times of repeat were sampled randomly from each
plot, every repeat as one group for 10 times, and the
average of the repeat as a canopy spectral reflectance.
1.2.2  Above-ground dry matter and total nitrogen
measurement

After field spectrum measurement, cut the above-
ground fresh biomass at the measurement area
immediately and took them back to thelaboratory, then
weighed them after de-enzyme and drying. At last,
measured the total nitrogen with Kjeldahl instrument.
1.3  Establishment and precision inspection of

hyperspectral remote sensing estimation
model

Fitting model including: simple linear function y =
¢ + ax; logarithmic function y =c¢ + alnx; parabola y =
¢ +ax + bx’ ; exponential function y = ce™. Where y is
the above-ground dry weight fitting value, x is spectral
variable, ¢ is a constant, and a, b is equation
parameters.

Root mean square error ( RMSE) evaluation and
mean relative error evaluation ( RE) ; the parameters
estimated from the wunivariate and multivariate
regression model which can evaluate by the root-mean-

square deviation of precision.

Vewse = 2 (y; _9;5)2/”
i=1

VRE= (yt _j;z)/thlOO%

Where y, is measured value, y is predicted value, n is
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sample number.
1.4 Selection of vegetation index

Based on the existing research results, 21 ratio
vegetation index and normalized difference vegetation
index of summer maize were selected to establish the
above-ground dry matter hyperspectral remote sensing
monitoring model (Tab.1). In addition, 21 ratio
vegetation indexes and normalized difference vegetation
index were greenness index( Gl) , pigment simple ratio
index a, b and ¢ (PSSRa, PSSRb, PSSRc), simple
pigment ratio index ( SRPI) , difference index ( DI) ,
difference vegetation index ( DVI), double difference

index ( DD ), moderate resolution imaging land
chlorophyll index ( MTCI ), NDVI, chlorophyll
normalized difference vegetation index ( NPCI ),

normalized magnesium removal effect index ( NPQI) ,
photochemical reflectance index ( PRI ), structural
reinforcement pigment index ( SIPI), improved red
index ( MSR750 ), plant

senescence index ( PSRI ),

edge ratio vegetation
red-green ratio index

(RGR) , and normalized difference vegetation index 1,

2,3 and 4 (NDVI1,NDVI2,NDVI3, NDVI4).

Tab.1 Published hyperspectral vegetation indices

evaluated in this study

Vegetation Index The Formula Literature No.
Gl R = Rss4/Repy [13]
PSSRa R =Rypy/ Rego [14]
PSSRb R = Rypo/ Ress [14]
PSSRe R =Rgp0/ Rz [14]
SRPI R = Ryzo/ Rego [15]
DI R =Rgy — Rss [16]
DVI R =Rgyy — Rego [17]
DD R= (Rsso = Rypg) — (Rogo — Reo)  [18]
MTCI R= (Ryso = Ryio)/(Ryio = Rego) [19]
NDVI R= (Rgy; = Rss0)/(Rgop + Rsso) [20]
NPCI R= (Rego = Razo)/(Rego + Razp) (23]
NPQI R= (Rys — Rys)/(Rys +Ryzs) [21]
PRI R= (Rs3 = Rs30)/(Rs3 +Rsp) [22]
SIPI R= (Rgpo = Rass)/(Rgp = Rego) [23]
MSR705 R= (Ryso = Rys)/(Ryps = Russ) [24]
PSRI R= (R = Rson)/Riso [24]
RGR R= (R +Rego) /(Rsyg + Rsgp) [25]
NDVI 1 R= (Rogo = Rogg)/ (R + Rygg) [25]
NDVI 2 R= (Rgo = Reoo)/ (Rgoo + Repo) [26]
NDVI 3 R= (Ropo = Rego)/ (Ropy + Rego) [27]
NDVI 4 R= (Rag = Rssp)/(Ragy + Rss) [28]

Note: Rss, represents spectral reflectance in 554 nm band, rest on.

2 Results and analysis

2.1 Effect of different nitrogen and phosphorus
levels on above-ground dry biomass at each
growth stage

Took the average of filed experimental data of
summer maize from the year 2011 to 2013 as example,
analyzed dynamic changing about above-ground dry
biomass and total nitrogen under different fertilization
treatments (Tab.2). Above-ground dry biomass during
the summer maize growing seasons trend to increasing
and reaching the maximum value at filling stage, while
the total nitrogen decreased gradually. Silking stage to
filling stage of maize were the peak of nutrient
absorption and accumulation. At the beginning of
silking stage, inner nutrients of corn transfer to ear,
reducing the assimilation rate'”’, that is the reason
why above-ground dry biomass growth rate was

and different
[30]

declined at latter of filling stage,
fertilization treatments with similar trends
At the same phosphate level, all of above-ground
dry biomass is significantly increased (P <0.05) with
the increasing of nitrogen. The study of Al ABBAS et
al. also proved that more nitrogen can significantly
increase the above-ground dry biomass™''. At the
same level of nitrogen, with the increasing of
phosphorus, above-ground dry biomass is also
increased. The above-ground dry biomass of high
nitrogen and phosphorus treatment ( P2N3, P2N4,
P3N3, P3N4 ) were higher than low nitrogen and
phosphorus treatment ( PONO, PON1, PINO, PINI).
Such as high nitrogen and phosphorus treatment and low
nitrogen and phosphorus treatment at silking stage, the
above-ground dry biomass was differ 6. 88, 5.35, 6.43,
5.80 t/hm” respectively, the total nitrogen was differ from
0.83% , 0.58% , 0.77% , 0.69% respectively.
At each growth stage, there were high correlation
coefficient between above-ground dry biomass and
nitrogen content, both of them were appeared similar

and had

significant difference under the affecting of the

trends which increased with fertilizer

treatment of nitrogen and phosphorus coupling process.

2.2 Summer maize canopy spectral reflectance
under different fertilization levels of nitrogen
and phosphorus

Took summer maize canopy spectral reflectance at
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Tab.2 ADMA and total nitrogen content of canopy under different fertilization treatment at different growth stages of maize

Huge bellbottom stage

Silking stage

Filling stage Maturity stage

Fertilization Dry Dry Dry Dry
treatment biomass/ Total biomass/ Total biomass/ Total biomass/ Total
nitrogen/ % nitrogen/ % nitrogen/ % nitrogen/ %
(t-hm~?) (t-hm~?) (t-hm™?) (t-hm™?)

NO 11. 64¢ 1.13¢ 18.38¢ 1. 04> 32. 544 0. 96¢ 37.90° 0. 841

N1 13.09¢ 1.34 21.09° 1.39* 35.14° 1.08" 41. 68° 0. 90

PO N2 13.79" 1.36" 21.32° 1.41° 35.81¢ 1.07" 42.13" 1. 00"
N3 13. 78" 1.41° 21. 65° 1.48° 40. 48° 1.25° 42. 35" 1. 12

N4 16. 35® 1. 69° 22.12° 1.53% 42.93% 1.31¢ 44. 420 1.24°

NO 12. 149 1.27¢ 19.01° 1.26° 36. 201 1.17¢ 39. 65¢ 1.18¢

N1 14.10° 1. 50" 20. 92¢ 1.44% 36. 15¢ 1.19° 43.18" 1.27%

P1 N2 14.07¢ 1. 46°¢ 21.20°¢ 1.43" 40. 64¢ 1.36" 44. 04> 1.26"
N3 14. 96" 1.58" 21.92° 1.58* 41.79* 1.39% 46. 63° 1.39°

N4 17.04% 1.81° 22.50% 1. 63" 45.74° 1.51° 46. 87" 1.41°

NO 12. 554 1.474 19. 744 1.49° 37. 844 1.31° 40. 861 1.24"

N1 14. 46° 1. 64° 20. 041 1. 50° 40. 18¢ 1.45% 43.11° 1.34%

P2 N2 15.19¢ 1.80" 24.19° 1.83" 48.08" 1.72* 48. 86" 1. 44*
N3 17.11° 1. 96* 25.26" 1.87" 47.73" 1.70° 48.61" 1.47*

N4 17. 93¢ 2.07° 26. 44° 1.97° 50. 66° 1.76" 51. 60° 1.52¢

NO 12.70¢ 1. 69¢ 20. 964 1. 69> 40. 554 1.35¢ 40. 99° 1.27¢

N1 14.37¢ 1.854 21.41° 1. 69" 41. 69¢ 1. 62° 44. 361 1.47°

P3 N2 15. 63¢ 2.01° 25.00" 1.99° 45.32° 1. 68" 47.31° 1.56%
N3 17.27" 2.16" 25. 44" 2.03° 45.38" 1.77° 49.57" 1.71°

N4 18.77° 2.37° 26.72° 2.13° 51.11° 1.97° 54.02° 1.79%

Coefficient correlation r 0. 887 0.930 0. 940 0. 862

Note: After the column data with different letters indicate differences among treatments at 5% significance level.

silking stage of Zhengdan 958 in a year 2013 as
example, analyzed summer maize canopy spectral
reflectance changing trend under different levels of
nitrogen and phosphorus (Fig.1). Summer maize
canopy spectral reflectance in the 350 nm to 2 350 nm
band was trend to similar basically. Summer maize
canopy spectral reflectance is lower in 350 nm to
680 nm band, spectral reflectance lower, about 550 nm
is chlorophyll strong reflection peak ( green peak )
which the spectral reflectance about 8% to 12%.
Absorption valley, the result of absorbing red light of
chlorophyll in photosystem, located in about 680 nm
band. At 680 nm to 750 nm band, spectral reflectance

that is the characteristic spectrum red
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Fig. 1

edge of green plants, strongly absorbing of chlorophyll
in red band and more than once scatter of near-infrared
light inside the leaves formed the band feature which is
an important indicator to describe the health of the
crop. There is a stable platform for reflection in the
(750 nm 1150 nm) ,
spectralreflectance trend stable (36% to 42% ). In

near infrared to canopy
1150 nm to 2 350 nm band, spectral reflectance is
decreased gradually, and about 2200 nm and 1700 nm
have two reflection peaks, at around 1 400 nm and
1 900 nm is water sub-total absorption bands due to the
greater influence of water vapour, which has been
struck.

Under different nitrogen and phosphorus levels,
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Change of canopy spectral reflectance of summer maize under different N, P application rates
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summer corn canopy spectral reflectance response curve
were trend similar. In visible wavelengths (350 ~
680 nm) , spectral reflectance is decreasing with the
increasing of nitrogen and phosphorus applied,
however, it is opposite in the near infrared (750 ~
1350 nm). There is no obvious rules after the 1 350 nm
band between spectral reflectance and nitrogen and
phosphorus fertility gradient.
2.3 Reflectance between correlation canopy
spectral and aboveground dry biomass
According to the reflectance analysis of the
independent experimental spectral reflectance data and

(Fig.2),

dynamics correlation between canopy reflectance and

above-ground dry biomass analyze the
above-ground dry biomass of summer corn. As is
shown in Fig. 2, at the range 350 nm to 2 350 nm
bands, spectral, aboveground dry weight and total
nitrogen correlation curve looked similar, and the
correlation coefficient average difference was little,
further suggested that there were high similarity
between the above-ground dry biomass and total

nitrogen and the correlation of spectral reflectance.

09
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Fig.2  Correlation coefficient between original spectral
reflectance and ADMA, N content of summer maize

canopy at different growth stages of maize

At 430 nm to 720 nm band, there were high negative
correlation between original canopy spectral reflectance
and the above-ground dry biomass of summer corn,
that formed a stable platform with correlation coefficient
were —0.593 to —0. 687. In the position of red edge,
obviously, all correlation  coefficient appeared
undulation, and the relevance of the significant
negative correlation gradually transformed into a
significant positive correlation with the increasing of the
wavelength. At 750 nm to 1350 nm band, the
coefficient  between spectral

correlation canopy

reflectance and the original above-ground dry biomass

of summer maize was 0.578 to 0.733. All selected
bands of vegetation index from Tab. 1 are within 430 nm
to 720 nm and 750 nm to 1350 nm that were included
in stable band platform of correlation coefficient.
2.4 Construction of above-ground dry biomass
spectrum monitoring model of corn

Above-ground dry biomass and corresponding
vegetation index (n = 240, 5 gradient nitrogen
species, 4 gradients phosphate, 3 repeat and 2 years of
experiments) were selected in this experiment from the
year of 2011 to 2013 of summer maize and established
the monitoring model based on different growth stages
(Tab.3). 21 vegetation index and liner, logarithmic,
quadratic and exponential equation were chosen to
establish fittingregression model, and analyzed the
fitting precision variation( R” and F value ) about above-
ground dry biomass model. Four models which based
on a same vegetation index, that the parabolic model
generally had a higher determination coefficient, the
linear, logarithmic and exponential fitting model had a
similar determination coefficient and the equation
parameters.

For the choice of crop physiological ecology
parameter of estimation model, not only required high
determination coefficient and F value of regression

From Tab.3, three

fitting models with determination coefficient and F

model, but also repeatability.

values from each of the growth stages were analysed
precision inspection ( Tab. 4). All above-ground dry
biomass determination coefficient of fitting models were
lower due to the little LAI and the interference of soil
background at the huge bellbottom stage of summer
maize. At silking stage, both determination coefficient
of regression mode and F values were improved, and
above-ground dry biomass and vegetation index PSSRe
and MTCI had a higher

coefficient. At stage, there were

determination
higher

determination coefficients of model which structured by

model

filling

above-ground dry biomass and vegetation index GNDVI
and NDVI4, so the model was chosen as the more
suitable model for the further accuracy test. At
maturity,, established model with above-ground dry
biomass and vegetation index DI had the highest

determination coefficient and higher F value.
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Tab.3 Parameters of regression models between ADMA and vegetation index of summer maize at different growth stages

Vegetation Regression Huge bellbottom stage Silking stage Filling stage Maturity stage
Index Model R? F R? F R? F R? F
Linear 0. 098 0. 655 0. 041 0.254 0.244 1.932 0.281 2.350
Logarithm 0. 099 0. 658 0. 037 0.229 0.251 2.011 0.278 2.312
Gl Quadratic 0. 099 0.276 0.143 0.419 0.270 0.924 0.318 1. 164
Exponential 0.110 0.738 0. 041 0.254 0.222 1.714 0.297 2.535
Linear 0. 688 13.234 0. 453 4.965 0.323 2. 861 0. 491 5.799
PSSRa Logarithm 0. 697 13.795 0.551 7.377 0. 366 3.459 0.502 6. 056
Quadratic 0.734 6. 892 0.716 17.179 0.424 1.843 0. 541 2.942
Exponential 0. 666 11.955 0.461 5. 141 0.345 3.158 0.477 5.469
Linear 0.548 7.285 0.536 6.942 0.434 4. 608 0.768 19. 850
PSSRD Logarithm 0.611 9.433 0. 640 10. 682 0. 500 5.997 0.777 20. 906
Quadratic 0. 849 26.292 0. 840 28. 879 0.583 3.501 0.784 9. 089
Exponential 0. 545 7. 180 0. 544 7.172 0. 453 4.974 0.759 18. 888
Linear 0.616 9. 628 0. 449 4. 890 0.345 3. 164 0.532 6. 809
PSSRe Logarithm 0. 642 10. 761 0. 557 7.546 0. 390 3.842 0. 544 7. 169
Quadratic 0. 749 7.452 0. 857 35. 487 0.439 1.954 0.582 3.477
Exponential 0. 601 9. 055 0.457 5.056 0.369 3.506 0. 505 6. 125
Linear 0. 192 1.427 0. 001 0. 007 0. 004 0.024 0.114 0.771
SRPI Logarithm 0. 186 1.375 0. 002 0.010 0. 003 0. 021 0.114 0.772
Quadratic 0.315 1. 152 0. 554 3.104 0. 181 0.554 0.114 0.321
Exponential 0. 194 1. 440 0. 003 0.016 0. 002 0.015 0.091 0. 603
Linear 0.675 12. 446 0. 666 11.957 0.755 18. 469 0. 884 45.590
DI Logarithm 0.707 14. 466 0. 699 13.921 0.771 20. 163 0. 891 49. 008
Quadratic 0. 766 71.332 0. 806 10. 354 0.797 9.829 0. 897 26. 184
Exponential 0.673 12. 359 0. 684 12.982 0.772 20. 290 0. 887 47.284
Linear 0.791 22. 669 0.617 9.653 0.514 6. 345 0. 840 31. 549
DVI Logarithm 0. 800 24.072 0. 645 10. 908 0.529 6.736 0. 844 32.501
Quadratic 0. 802 20. 788 0.811 10. 732 0. 585 3.525 0. 858 15. 145
Exponential 0. 857 37.169 0. 634 10. 405 0.536 6.927 0. 840 31.532
Linear 0. 805 24. 808 0.767 19.709 0.704 14. 250 0.726 15. 881
DD Logarithm 0.811 25.676 0.725 15. 800 0. 624 9.950 0.748 17.798
Quadratic 0. 815 11. 006 0.767 8.213 0.708 6.049 0.761 7.962
Exponential 0.814 26.270 0.792 22. 856 0.714 15. 008 0.750 18.015
Linear 0.721 15.498 0. 802 24.316 0. 657 11.493 0. 663 11.798
MTCI Logarithm 0.769 19. 935 0.781 21. 441 0. 652 11.253 0.717 15.202
Quadratic 0. 804 10. 271 0. 802 10. 137 0. 663 4.927 0.797 9.793
Exponential 0.724 15.757 0. 863 27. 840 0. 660 11. 649 0.683 12. 955
Linear 0.589 8.591 0.710 14. 668 0. 791 22.726 0. 861 37.211
GNDVI Logarithm 0. 626 10. 060 0. 740 17. 052 0. 799 23.810 0. 871 40. 531
Quadratic 0. 851 38.799 0. 840 13. 144 0. 806 10. 404 0. 878 27.135
Exponential 0. 591 8.659 0.725 15.833 0. 809 25.488 0. 861 37.125
Linear 0. 187 1.378 0. 002 0.010 0. 003 0.021 0.114 0.772
NPCI Logarithm 0.242 1. 920 0. 020 0.123 0.015 0. 090 0.134 0.929
Quadratic 0.315 1. 149 0. 557 3.137 0.178 0. 541 0.114 0.323
Exponential 0. 189 1.395 0. 003 0.021 0. 002 0.012 0.091 0. 603
Linear 0. 100 0. 670 0.012 0.071 0.311 2.702 0.025 0. 156
NPOI Logarithm — — — — — — — —
Quadratic 0.477 2.278 0.222 0.713 0.436 1.929 0. 027 0.070
Exponential 0. 088 0.578 0.013 0.076 0.302 2. 600 0. 031 0. 191
Linear 0. 337 3.046 0. 700 13. 999 0.219 1. 682 0.031 0. 190
PRI Logarithm 0.384 3.733 0.714 14. 968 0.259 2.092 0. 020 0. 121
Quadratic 0. 430 1. 885 0.723 6.529 0.258 0. 868 0.236 0.773
Exponential 0.377 3.626 0.672 12.310 0.239 1. 889 0.025 0. 151
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Tab. 3
Vegetation Regression Huge bellbottom stage Silking stage Filling stage Maturity stage

Index Model R F R? F R? a R? F
Linear 0.013 0. 081 0. 185 1.363 0. 006 0.034 0. 094 0. 625
SIPT Logarithm 0.014 0.082 0.184 1.357 0. 006 0.033 0. 094 0.621
Quadratic 0.013 0. 081 0. 186 1.368 0. 006 0.035 0. 095 0.628
Exponential 0.018 0. 109 0. 205 1. 546 0. 007 0.043 0.075 0. 490
Linear 0. 760 19. 001 0. 794 23. 154 0.769 19. 963 0.528 6.703
MSR705 Logarithm 0.761 19. 076 0. 765 19.577 0.753 18.299 0.576 8. 145
Quadratic 0.762 7.992 0. 804 10. 266 0.770 8.391 0.676 5.217
Exponential 0.762 19. 261 0. 817 26. 798 0.762 19. 160 0. 556 7.499
Linear 0.192 1. 426 0. 780 21.283 0. 381 3. 694 0. 485 5. 649

PSRI Logarithm — — — — — — — —
Quadratic 0.237 0.777 0.784 9. 075 0. 405 1. 705 0. 848 13.936
Exponential 0.198 1.481 0. 804 24. 580 0. 386 3.771 0. 478 5.492
Linear 0. 040 0. 247 0.301 2.587 0.042 0.261 0.111 0. 746
RGR Logarithm 0. 039 0.241 0. 301 2.586 0. 040 0.251 0.111 0.752
Quadratic 0. 064 0.172 0.301 1.078 0. 069 0.185 0.123 0. 350
Exponential 0. 046 0. 287 0.298 2.553 0.033 0.202 0.118 0. 802
Linear 0.824 28. 164 0. 766 19. 660 0. 627 10. 086 0.779 21.134
NDVI1 Logarithm 0. 837 30.921 0.769 19.934 0.617 9. 658 0.790 22.522
Quadratic 0. 853 14.454 0.773 8. 491 0. 627 4.203 0. 805 10. 321
Exponential 0. 830 29.197 0.790 22.535 0. 643 10. 803 0.796 23. 456
Linear 0. 621 9. 830 0.720 15. 458 0.622 9. 882 0. 839 31.335
NDVI2 Logarithm 0. 644 10. 849 0. 743 17.379 0. 626 10. 028 0. 842 32.016
Quadratic 0. 805 13.935 0. 835 12. 671 0. 629 4.241 0. 848 13. 898
Exponential 0.619 9.764 0.735 16. 642 0. 645 10. 899 0. 839 31.270
Linear 0. 699 13.903 0.618 9.703 0.378 3.652 0.526 6. 648
NDVI3 Logarithm 0.701 14. 060 0. 640 10. 662 0. 385 3.757 0.529 6. 749
Quadratic 0. 699 13.903 0. 843 13.395 0. 400 1. 664 0.574 3.363
Exponential 0.677 12. 564 0. 630 10. 218 0. 405 4. 086 0.514 6.347
Linear 0. 590 8.619 0.711 14.753 0.796 23.369 0. 856 35.791
NDVI4 Logarithm 0. 627 10. 079 0.741 17. 126 0. 802 24.379 0. 867 39. 026
Quadratic 0. 850 47.507 0. 839 13.003 0. 809 10. 599 0. 870 27.117
Exponential 0. 591 8.677 0.726 15.929 0.814 26.237 0. 856 35. 691

Note ;—denotes arguments ( NPQI, NPQI) comprises a non-positive value, which can not be calculated power function model.

2.5 Precision verification of maize above-ground
dry biomass spectrum monitoring

To test the stability and reliability of the monitoring
model, root-mean-square error ( RMSE) and relative
error (RE) of summer corn were verified and tested at
different growth stages according to the independent
experimental data (n =240) from 2011 to 2014 year.
Chose 3 determination coefficient and a model with
higher F value higher from each stages tested the
precision verification about above-ground dry biomass
model, and selected a most suitable model which has a
better stability and repeatability with lower RMSE and
RE. The results show that the model established
between above-ground dry biomass and vegetation

index ( GNDVI, PSSRc, NDVI4 and DI) were the

most suitable model.
3 Discussion

In order to study the above-ground dry matter, fresh
crop leaves are sampled and weighted in traditional
methods which were not only time-consuming and
laborious, but also destructive to the crops. However,
remote sensing technology can be used to collect and
process the field information of crop canopy rapidly and
effectively without any destruction, then a large area of
crops can be detected quickly and accurately.

The existing researches focus on fitting model of

[32-33]

above-ground dry matter on maturity stage , and

the corresponding researches on crop growth period are

less. A fitting model, in this experiment, was
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established between vegetation index which structured
by a variety of bands and different stages of summer
maize and above-ground dry matter, and the
corresponding precision was tested at the same time.

Except that, we analyzed the relationship between

above-ground dry matter and canopy reflectance spectra
at the point of view of statistics, and established the
corresponding monitoring model. Finally, it provides a
quantitative index for monitoring and diagnosing field

corn growth.

Tab.4 Verification of regression models between ADMA and vegetation index of summer maize at different growth stages

Growth stage Vegetation index

Fitting model

Root mean square deviation/ (t-hm =) Relative error/%

DVI y =1. 164" 36~ 2.096 10. 85

Huge bellbottom stage GNDVI y = —190. 298 +659x —520. 75247 0. 945 5.53
NDVII y = —29.000 +149. 782x - 116. 92847 1. 644 9.23

PSSRe y = =20.977 +9. 796x 0. 5017 1. 044 3.93

Silking stage MTCI y =14, 834" %07 2.246 7.54
NDVI3 y = =367.796 +976. 526x — 605. 895> 1.994 7.52

GNDVI y =16. 183" 81 5.473 10. 57

Filling stage NDVI4 y= —41.278 +238. 043x — 148. 690x° 5.013 11.05
NDVI4 y =16. 104¢* % 5.408 10. 47

DI y =130. 535 +68. 978Inx 2.175 4.932

Maturity stage DI y = —276.451 +1979. 524x -2 982. 5154* 2.234 5.516
DI y =11.254¢> 312 1.761 4.578

Compared to the wide band vegetation index,
however, the vegetation index of the narrow band is
easy susceptible to the effects of instruments,
environmental noise and background that may be the
important reason for the difference which can be
decreased by vegetation index of band combination in
the result of research, and improve the accuracy of the
model according to the experiment results'* .

Seven models which contained 800 nm and 550 nm
parameters were selected from 12 models (Tab.4) in
different growth stages. In many statements, 800 nm
and 550 nm band parameters has been applied to the
large number of vegetation indexes and a variety of
plant growth monitoring, relatively speaking, the
research on growth monitoring of summer maize in
different growth period is less. In this paper, the
correlation analysis between the above-ground biomass
of summer maize and various spectral vegetation
indexes at different stages have been carried out, so as
to the verification of relevant models. The results
showed that the sensitive bands appeared some
differences in summer corn at different growth stages
which result in different choices of vegetation index.
Otherwise, DI has a higher determination coefficient
and F value, and all have smaller root mean square
error and relative error in the later stages when biomass
become higher.

Nine models have been selected from growth former

medium-term (huge bellbottom stage, silking stage and
filling stage ), the models with NDVI and GNDVI
parameter of model vegetation index were 4 and 2
respectively, these two kings of models have been
widely used to the construction of nitrogen, LAI and
biomass model. Yet, at the maturity stage, DI
vegetation index better solves the problem of drawback ,
easy saturation, in NDVI formula'***"".

In this study, the establishment of the optimality
model at the maturity stage to above-ground dry
biomass were based on vegetation index ( DI) of the
exponential function model, which with the similar
conclusions compared to the previous studies™ ",
and other DI in this growth period to verify the model
also has relatively low root mean square error and
relative error. Models were established according to
vegetation index ( DI) with good stability and high
precision. It is particularly important that build a
maturity stage model what has high practical
significance for the fact of that existing on above-
ground dry biomass research focus on the maturity
stage, and mature stage dry matter quality research has
important application value.

This experiment was based on the fitting analysis of
spectral vegetation index about above-ground dry
biomass of summer maize at different stage is, the
optimum vegetation index has bigger difference, so it

can not be used to monitor all growth stages of
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vegetation index so far. The model for the quality of
dry matter in the spectrum monitoring of the general
suitable for all growth stages is still needed to be
further studied.

4 Conclusion

(1) There were significant differences between
above-ground dry biomass and total nitrogen under
different conditions of fertilizer. At different growth
stages, total nitrogen was decreased while above-
ground dry biomass was increased gradually. It has a
strong correlation between canopy spectral reflectance,
total nitrogen and above-ground dry biomass.

(2) At the huge bellbottom stage, silking stage,
filling stage and maturity stage of summer maize, the
optimal prediction model of ground dry biomass were:
y = —190.298 + 659x — 520.752x° (GNDVI), y =
-20.977 + 9.796x - 0.501x> ( PSSRc ),

16. 104" ®* (NDVI4) and y =6. 3447 (DI).

y =
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Estimation Models of Above-ground Dry Matter Accumulation of Summer
Maize Based on Hyperspectral Remote Sensing Vegetation Indexes

Liu Bingfeng' Li Jun' He Jia® Shi Zujiao'
(1. College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
2. Agricultural Economy and Information Research Institution ,

Henan Academy of Agricultural Sciences, Zhengzhou 450002, China)

Abstract: An on-site field experiment, which includes five nitrogen fertilizer application rate treatments,
four phosphorus fertilizer application rate treatments and two summer maize cultivars treatments, was
conducted at agricultural experimental station of Northwest A&F University during 2011—2014. Summer
maize canopy spectral reflectance and above-ground dry matter accumulation (ADMA) were measured at
the huge bellbottom stage, silking stage, filling stage and maturity stage of summer maize. 21 canopy
vegetation indexes of hyperspectral remote sensing in 2011 and 2013 were chosen to establish liner,
logarithmic, quadratic and exponential regression relationship between ADMA and canopy spectral
parameters for each cultivar. Different regression models were applied to establish the relationship
between spectrum vegetation indexes and summer maize ADMA. Three models with high coefficients and
F values at each growth stage were chosen to verify root mean square error and relative error with data of
canopy spectral reflectance and ADMA in 2012 and 2014 separately. The smallest root mean square error
and relative error models were chosen as the best models for estimation ADMA of maize. The results show
that, at the huge bellbottom stage, filling stage and maturity stage of maize, spectrum vegetation indexes
for the best fitting regression relationship models with ADMA were GNDVI, PSSRe, NDVI4 and DI.
These models could be used as the best models for the estimation of summer maize above-ground ADMA.
Key words: summer maize; canopy; above-ground dry matter accumulation; hyperspectral remote

sensing vegetation indexes; estimation model
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Tab.1 Hyperspectral vegetation indices used in this study

LRGSR HEAR SCHk T 5
SEEFREL (GI) R = Rss,/ Rz [13]
FHAE 0 3 T A LU 35 % a (PSSRa) R = Ry /Rego [14]
FRIE (4 R RS LU (A5 % b (PSSRb) R = Ry /Ress [14]
FEAE €5 28 17 B LU (E 45 42 ¢ (PSSRe) R = Rgo0/Ryzo [14]
] .5 2 LU 48 % (SRPT) R = Ry30/Rego [15]
2Z{H A8 % (DI) R = Rgyp = Rsso [16]
Z{E PR E (DVD) R =Ry = Rego [17]
W ZE4E% (DD) R= Ri50 = Ryy9 = (Rygo = Rez0) [18]
r 43 A il v 2 2 A5 4R $0 (MTCT) R= (Rys9 = Ry19)/(Rq10 = Reso ) [19]
)0 — b AE B 45 %k (GNDVI) R= (Rg —Rsso) / (Rggg + Rssp) [20]
i R T — LA B S %L (NPCT) R= (Rgsp = Ryzp) / (Rego + Rusg) [21]
U — 1k 5 5 7 F 48 $ (NPQT) R= (Rys5 —Rys)/(Rys + Ryss) [22]
oAb F LR £ (PRT) R= (Rs3 = Rs30)/(Rs30 + Rs) [23]
S5 R IR 4 F AR £ (SIPD) R= (Rypp = Ryss )/ (Rygpo = Regy) [21]
PR 2L 3 B 4 9t 38 0 ( MSR705) R= (Ryso = Rys )/ (Ryps = Ryys) [24]
T 5% (PSRI) R= (Rgs = Rsoo) /Rysp [24]
ZL4% I IEE %L (RGR) R= (Rg; + Reeo )/ (Rsp0 + Rs0) [25]
A — e wedE %1 (NDVIL) R= (Ryg0 = Ryo5) / (Rygo + Ryog) [25]
H—fbtEH ¥ 2 (NDVI2) R= (Rgpy =~ Reo) / (Rypp + Regp) [26]
H— AL 5 %3 (NDVI3) R = (Ryy — Rego) /(Rggy + Regy) [27]
3 —fLiE B iE ¥4 (NDVI4) R= (Ryg = Rsso) /(Rygo + Rssp) [28]

1 i Rssy 7R 554 nm 9063 O3, A A dE

R2 AREEELETELEENPEERM ETFYRESEREL2ERENY

Tab.2 ADMA and total nitrogen content of canopy under different fertilization treatments at different growth stages of maize

KWL A it 22 44 HEH SR
Jit FIES Ak T/ Wi Ty o &/ B Wi T o &/ Wi Ty o &/ Wi
(t-hm~?) I3/ % (t-hm~?) I % (t-hm~?) 530 % (t-hm~?) 538/ Y
NO 11.64° 1.13¢ 18. 38 1. 04" 32. 541 0.96° 37.90¢ 0. 841
N1 13.09° 1.34" 21.09° 1.39° 35.14° 1.08" 41. 68" 0. 90
PO N2 13.79" 1.36" 21.32° 1.41° 35.81° 1.07" 42.13" 1. 00"
N3 13.78" 1.41° 21.65° 1.48" 40. 48" 1.25° 42.35" 112
N4 16.35° 1.69° 22.12° 1.53° 42.93° 1.31° 44. 42° 1.24°
NO 12.14¢ 1.27¢ 19.01° 1.26°¢ 36. 20 1. 17°¢ 39.65° 1.18
N1 14.10° 1.50"¢ 20. 92 1. 44" 36.15¢ 1.19° 43. 18" 1.27"
Pl N2 14.07¢ 1. 46° 21.20° 1.43" 40. 64° 1.36" 44. 04" 1.26"
N3 14. 96" 1.58" 21.92° 1.58° 41.79" 1.39% 46. 63" 1.39°
N4 17. 04* 1.81° 22.50° 1.63° 45.74° 1.51° 46. 87* 1.41°
NO 12. 559 1.47¢ 19.74¢ 1.49° 37. 844 1.31° 40. 86 1.24"
N1 14. 46° 1.64¢ 20. 044 1.50¢ 40. 18¢ 1.45" 43.11° 1.34%
P2 N2 15.19¢ 1.80" 24.19° 1.83" 48.08" 1.72° 48. 86" 1.44°
N3 17.11° 1.96" 25.26" 1.87" 47.73" 1.70° 48. 61" 1.47°
N4 17.93* 2.07° 26. 44° 1.97° 50. 66° 1.76° 51.60° 1.52°
NO 12.70° 1.69° 20. 96 1.69" 40. 55 1.35¢ 40.99°¢ 1.27
N1 14.374 1.85¢ 21.41° 1.69" 41.69°¢ 1.62¢ 44. 36" 1.47"
P3 N2 15. 63¢ 2.01° 25.00" 1.99* 45.32" 1. 68" 47.31° 1.56"
N3 17.27° 2.16" 25. 44" 2.03" 45.38" 1.77" 49.57" 1.71°
N4 18.77* 2.37° 26.72° 2.13° 51.11° 1.97° 54.02° 1.79°
IEE Y /8 0. 887 0.930 0. 940 0. 862

TE : [F) B8 J5 AN [R] 7 B 3 7R b B ) 25 57 3% P < 0..05 B35 K F- o
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WU B 3 B2, B R OK b T i A B
PAR LR A SR TR - e - U ST =
I 22 3 1) 9 3 st R W SRR R R I v 0
NI 22 35157 By | A R A P A P 3% 23 T A ) T K
THEE RS WA T R Ak R Br DAE 3% 05 3 B T
Wy o i 3G B TR B AS ) it JE A 3 E A A 0L
A a0

TEAH [ W 2K P F , BEE Tt B 5, e BT
o YA 3 K (P <0.05) , Al Abbas 45 i fF 5¢
LR T 4t A AT S e b R R
FEAH R RUIE K P Bl 4 it i 2t 165, 4 b ) o
WA BT K. m A BEAS G A0 3 (P2N3 | P2N4 |
P3N3 [P3N4) #th |14 5 & 1 & TR A AR #4554
FH(PONO ,PON1 ,PINO . PIN1), it 22 1 & & &
A A HE SACA IR RS G AL 34T b BT
AT AH 2% 6. 88 .5.35 .6.43 .5.80 t/hm” , & & i &
AR EAE 4R 0. 83% .0.58% 0.77% .0.69% .

EALETE, b ETYRE SEARSEAK
o B AH G R, R E T AW & B e R A
AL 1) 728 1k s 35, 357 I it JES 5 %) 34 55 T 385 0n L ELAT
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PR B KR R OIS TE 350 ~ 2350 nm B E
PEEAR—F, 1E 350 ~ 680 nm Bt , il S b AL
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FRIEDGIE “ £030 7, £006 3 Bt 4 R i 3 ZU R I 5 0
CLAMNPCBOGTE M R B 2 O HUAT IR I T % i B
fiE, WP AE 2 41 3 1 P (e AR B0 1) T AR AR . 7RI
LLAMB B (750 ~1 150 nm ) A — 2 € RHF & 5l 2
JGi AT A TR E (36% ~42% ). 7E 1150 ~
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2200 nmZE 5 AH 2 S 78 1400 nm £ 1900 nm
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Fig.1 Change of canopy spectral reflectance of summer maize under different N, P application rates

ARV RBEREAE K F R B RS SR OE 1 i
IO i £ 72 A S g AR A T DL D I B (350 ~
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it 52 G e 3 0 T 5 AE 1350 nm Z ), Ok
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R XHE

K 2011—2012 453 37 6 15 B I 3 52 56 4 I
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554 b R A A AR S i 2 F AL, HL
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Fig.2 Correlation coefficient between original spectral

%

reflectance and ADMA |, N content of summer maize

canopy at different growth stages of maize
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WA 9 B IEAN G . £E 750 ~ 1350 nm B, B K
K J2 T U6 T 5L R M b R B O R AL
7 0.578 ~0.733, 1w Jiv e il 45 B md) I BL L, 1
TE 430 ~720 nm F1 750 ~ 1 350 nm %2 & #H 5 R B0k
B PG W
2.4 EFEXRMEFYREREENERGZ

e 2011 4F A1 2013 4F 5 Tk BT W S
FEX IO A AE B A5 R (n = 240,5 FhRE B 4 T ik
MERRIE 3 AT K 2 AFK ), 2T AR A F
FESL MR Y (3 3) o A SCHE £ A o K X K e
B R B AR ROR BOS 21 R B IR AR R LG
[\ YRR, FF 3153 53 A b 5 4005 45 R B R
FEARAL (PUE R R Je FAH) o S5 F [ — M wk AR
BT ST A 4 FiRE D ep R O AR o 5L AT A
1 PR R 2R O RO R RO A R R R A A

A B B E AR RO T AR SR

X TR W A AR A5 2 MU SR T e, AN
SR [l AR 4 e R AR HORT P 8 B, T L 2 A
AT NF 3, AT A ) i R
FE RN FAS R 1Y 3 A 8L B8 B R AR 4G
SIBT(FR4) o FERMIWCEI, B F Ok b4 5
4 005 BT R R RO A, R AR i T R R
B EUN, 2T SRR AEnk 221, Bl 4R
T E R RO FAHY A BTt H BT 5
T BEAE %0 PSSRe 1 MTCI A 5 iy i A6 1 b 2 2R 80
FEVESR Y], b ) B 5 R B4R %0 GNDVI A
NDVI4 21 i B30 A 5 e 1) T 8 0, TR It i
BOB AT DURE BEAT o — PG AR 0 o A LAY, b
b A B A R DT 4R A B R A T 1 ok
TE R BONEL R F A
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Tab.3 Parameters of regression models between ADMA and vegetation index of summer maize at different growth stages

MR R zkﬂ)ﬁwm,ﬁﬁ : it 22 1] : T2 3 : JASY
F R F R F R F
2k 0. 098 0. 655 0.041 0.254 0.244 1.932 0.281 2.350
GI POR3 0. 099 0. 658 0.037 0.229 0.251 2.011 0.278 2.312
—KR 0.099 0.276 0.143 0.419 0.270 0.924 0.318 1. 164
R4 0.110 0.738 0.041 0.254 0.222 1.714 0.297 2.535
21k 0. 688 13.234 0.453 4.965 0.323 2.861 0.491 5.799
PSSRa PO 0. 697 13.795 0.551 7.377 0.366 3.459 0.502 6.056
—K 0.734 6.892 0.716 17.179 0.424 1.843 0. 541 2.942
R0 0. 666 11.955 0.461 5. 141 0.345 3.158 0.477 5.469
2k 0. 548 7.285 0.536 6.942 0.434 4. 608 0.768 19. 850
PSSRb POR3 0.611 9.433 0. 640 10. 682 0.500 5.997 0.777 20. 906
—KR 0. 849 26.292 0. 840 28. 879 0.583 3.501 0.784 9. 089
R 0. 545 7.180 0. 544 7.172 0.453 4.974 0.759 18. 888
2 0.616 9.628 0. 449 4.890 0. 345 3. 164 0.532 6. 809
PSSRe Xt % 0. 642 10. 761 0.557 7.546 0.390 3.842 0. 544 7.169
—K 0.749 7.452 0. 857 35.487 0.439 1.954 0. 582 3.477
R0 0. 601 9.055 0. 457 5.056 0.369 3.506 0.505 6.125
2k 0.192 1.427 0. 001 0. 007 0. 004 0.024 0.114 0.771
SRPI POR3 0.186 1.375 0. 002 0.010 0.003 0.021 0.114 0.772
—KR 0.315 1.152 0.554 3.104 0.181 0.554 0.114 0.321
R 0. 194 1. 440 0.003 0.016 0. 002 0.015 0.091 0. 603
2k 0. 675 12. 446 0. 666 11.957 0.755 18. 469 0. 884 45.590
DI PO 0.707 14. 466 0. 699 13.921 0.771 20. 163 0.891 49. 008
—K 0. 766 71.332 0. 806 10. 354 0.797 9. 829 0. 897 26. 184
R0 0.673 12.359 0. 684 12.982 0.772 20.290 0. 887 47.284
2k 0.791 22.669 0.617 9.653 0.514 6.345 0. 840 31. 549
DVI POR3 0. 800 24.072 0. 645 10. 908 0.529 6.736 0. 844 32.501
—KR 0. 802 20. 788 0.811 10. 732 0. 585 3.525 0. 858 15. 145
R4 0. 857 37.169 0.634 10. 405 0.536 6.927 0. 840 31.532
2k 0. 805 24. 808 0.767 19. 709 0.704 14.250 0.726 15. 881
DD Xt 5 0. 811 25.676 0.725 15. 800 0. 624 9.950 0.748 17.798
—K 0. 815 11. 006 0.767 8.213 0.708 6. 049 0.761 7.962
LR 0.814 26.270 0.792 22.856 0.714 15.008 0.750 18.015
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gZR3
- I R Zjiﬂfﬁﬂﬂ)\Ll,ﬁ;q it 223 TE R o %]
R F R? F R? F R? F
&k 0.721 15. 498 0. 802 24.316 0.657 11.493 0. 663 11.798
i e 0.769 19.935 0.781 21. 441 0.652 11.253 0.717 15.202
—% 0. 804 10.271 0. 802 10. 137 0.663 4.927 0.797 9.793
5% 0.724 15.757 0. 863 27. 840 0. 660 11. 649 0. 683 12. 955
g b 0.589 8.591 0.710 14. 668 0.791 22.726 0. 861 37.211
NDVI XA 0. 626 10. 060 0.740 17.052 0.799 23.810 0.871 40.531
—% 0. 851 38.799 0. 840 13. 144 0. 806 10. 404 0.878 27.135
J5R 0.591 8. 659 0.725 15. 833 0. 809 25. 488 0. 861 37.125
o 0.187 1.378 0. 002 0.010 0.003 0.021 0.114 0.772
- A B 0.242 1.920 0.020 0.123 0.015 0. 090 0.134 0.929
% 0.315 1. 149 0.557 3.137 0.178 0.541 0.114 0.323
5% 0.189 1.395 0. 003 0.021 0.002 0.012 0.091 0. 603
gtk 0. 100 0.670 0.012 0.071 0.311 2.702 0.025 0.156
NPQI A N N N - o - - -
—% 0.477 2.278 0.222 0.713 0.436 1.929 0.027 0.070
R 0.088 0.578 0.013 0.076 0.302 2. 600 0.031 0. 191
gtk 0.337 3.046 0.700 13.999 0.219 1. 682 0.031 0. 190
- op 0.384 3.733 0.714 14. 968 0.259 2.092 0.020 0.121
—% 0. 430 1. 885 0.723 6.529 0.258 0. 868 0.236 0.773
1R 0.377 3.626 0.672 12.310 0.239 1. 889 0.025 0. 151
2 0.013 0. 081 0.185 1.363 0. 006 0.034 0.094 0. 625
- *H B 0.014 0.082 0.184 1.357 0. 006 0.033 0.094 0.621
—% 0.013 0.081 0.186 1.368 0. 006 0.035 0.095 0.628
158 0.018 0. 109 0. 205 1. 546 0.007 0.043 0.075 0. 490
g b 0.760 19. 001 0.794 23. 154 0.769 19. 963 0.528 6.703
- R4 0.761 19.076 0.765 19.577 0.753 18.299 0.576 8. 145
—% 0.762 7.992 0.804 10. 266 0.770 8.391 0.676 5.217
158 0.762 19. 261 0.817 26.798 0.762 19. 160 0.556 7.499
2 0.192 1.426 0.780 21.283 0.381 3.694 0. 485 5.649
PSRI ke N - B o - B N -
% 0.237 0.777 0.784 9.075 0.405 1.705 0. 848 13.936
5% 0.198 1.481 0.804 24. 580 0.386 3.771 0.478 5.492
&t 0. 040 0.247 0.301 2.587 0.042 0.261 0.111 0.746
- e 0.039 0.241 0.301 2.586 0.040 0.251 0. 111 0.752
—~% 0. 064 0.172 0.301 1.078 0. 069 0.185 0.123 0.350
158 0. 046 0.287 0.298 2.553 0.033 0.202 0.118 0. 802
24 0. 824 28. 164 0.766 19. 660 0.627 10. 086 0.779 21. 134
VI X8 0.837 30. 921 0.769 19. 934 0.617 9.658 0.790 22.522
—% 0. 853 14. 454 0.773 8. 491 0.627 4.203 0. 805 10. 321
5 R 0. 830 29.197 0.790 22.535 0. 643 10. 803 0.796 23. 456
o 0.621 9.830 0.720 15. 458 0.622 9.882 0.839 31.335
- A B 0. 644 10. 849 0.743 17.379 0.626 10. 028 0.842 32.016
% 0. 805 13.935 0.835 12. 671 0.629 4.241 0. 848 13. 898
5% 0.619 9.764 0.735 16. 642 0. 645 10. 899 0.839 31.270
24 0. 699 13.903 0.618 9.703 0.378 3.652 0.526 6.648
DV bR 0.701 14. 060 0. 640 10. 662 0.385 3.757 0.529 6.749
—% 0. 699 13. 903 0. 843 13. 395 0. 400 1. 664 0.574 3.363
158 0.677 12. 564 0. 630 10. 218 0. 405 4.086 0.514 6.347
4tk 0.590 8.619 0.711 14.753 0.796 23.369 0.856 35.791
NDVIs X8 0.627 10.079 0.741 17. 126 0.802 24.379 0.867 39. 026
% 0. 850 47.507 0.839 13. 003 0.809 10. 599 0.870 27.117
5% 0.591 8.677 0.726 15.929 0.814 26.237 0. 856 35. 691

"R AR S AR IEBUE, TR Bk B ny
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Tab.4 Verification of regression models between ADMA and vegetation index of summer maize at different growth stages

A H I LRI TR A BT B2/ (t+hm ~?) AAXT 1R 22/ %
DVI y = 1. 164¢" 3% 2.096 10. 85
NN ] GNDVI y = —190.298 +659x —520. 752x> 0.945 5.53
NDVII y = —29.000 +149. 782x - 116. 928> 1. 644 9.23
PSSRc y= =20.977 +9.796x - 0. 501" 1. 044 3.93
it 22 1) MTCI y =14, 834" 7~ 2.246 7.54
NDVI3 y = —367.796 +976. 526x — 605. 895> 1. 994 7.52
GNDVI y =16. 183" %! 5.473 10. 57
TS NDVI4 y= —41.278 +238. 043x — 148. 690x> 5.013 11.05
NDVI4 y =16. 104" %> 5.408 10. 47
DI y =130. 535 +68. 9781nx 2.175 4.932
%] DI y = —276.451 +1979. 5245 — 2 982. 515x° 2.234 5.516
DI y =11.254¢> 312 1.761 4.578

2.5 BEERMETFYREXLEEVNRBEFEERR

TR IR R A AR E M L n] S R R
2012 41 2014 4F 3 5K #% A8 77 i 107 5 960 57 40 3l
(n =240) #EAT 377 R 22 (RMSE ) MAH X 3% 22 (RE)
AP A A 7 IS 20 S e 4% 3 A B E AR KA
F A8 v A8 20 0 A7 i b T ) o B A RS B2 A 56
FF 1B 329 J7 KR 22 TR X 15 22 27 5 AR 1) 4 7R Oy o i
B PR T B B AR E PR A AT AR . R AR
W, st b1 ¥ BBt & 5 AE 48 %0 GNDVI, PSSRe,
NDVI4 FI DI ## 57 #9455 751y di i A 8
3 itig
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C A BT 58 2 i BT 00T B 3t b ) o A
UL 0 D AR A G P A TR L A R
FE o AS SR I 0F B TR A [ A T 3 R 2 i B
R BRSO,
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BTy R SEE RSN ER IR TS5
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Wi it T LR b
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P14 AL 1 8 A 28 AT 3 3R 2 4R e A TR ) A
Jig

FEAN TR A 7 I e 1 12 BRI (3R 4) &
£ 800 nm il 550 nm Z# AL 354 T 4, fEE
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W R M BT R BT SR e
B 5t A 5 A g S R b T o R B B AT R Y A

(2) FE R W WA 1 1 o 22 7 SR 0 R 2
BR KM T B 09 A A I AR B S Sy =
—190. 298 +659x —520. 752x> (GNDVI) .y = —20.977 +
9.796x - 0.501x° ( PSSRc ). y = 16.104¢" %"
(NDVI4) fil y = 11. 254> (DI) ,,
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