doi:10.6041/j.issn.1000-1298.2014.06.020

配比变量施肥中多肥料掺混模拟与掺混腔结构优化^{*}

苑 进^{1,2} 刘勤华¹ 刘雪美^{1,2} 张 疼¹ 张晓辉¹

(1.山东农业大学机械与电子工程学院,泰安 271018; 2.山东省园艺与装备重点实验室,泰安 271018)

摘要:提出3种配比变量施肥中掺混腔结构设计方案,应用散粒体离散元法对多种肥料颗粒的排肥、掺混和撒播过 程进行了数值模拟,分析了多肥料掺混特性和掺混腔的不同结构对颗粒掺混均匀度的影响。计算结果及机理分析 表明:掺混腔碰撞壁面形状影响颗粒碰撞后的反弹角度与水平速度分量,两者又进而影响碰撞后颗粒在掺混腔中 的散布面积;设计的B型掺混腔结构能得到最佳的掺混均匀度;当掺混颗粒流量增加时,多肥料掺混均匀度也相应 提高。

关键词: 配比变量施肥 掺混腔 离散元法 掺混均匀度 结构优化 中图分类号: S147.35 文献标识码: A 文章编号: 1000-1298(2014)06-0125-08

引言

肥料的各种养分在土壤中的运动速率及被作物 吸收的程度各不相同,作物缺少某一养分会制约其 他养分的利用^[1-2]。精准变量施肥应依据土壤养分 和作物目标产量决策施肥处方,该处方不仅包含各 单元田块的施肥量,还有氮、磷、钾配比^[3-4]。配比 变量施肥不仅能调整单元田块的施肥量,还能在线 调整多种肥料的施肥配比,实现氮磷钾的按需变量 和平衡施肥^[5]。在多种肥料颗粒的排肥、掺混和撒 播过程中颗粒肥料容易产生离析、类聚现象,从而使 播撒到作物根部的养分不均衡,保证撒播到土壤中 的不同肥料的掺混均匀度成为变量施肥的关键问 题。

为进一步推广精准农业技术,研究人员在变量施肥基础上,已经初步开展了配比变量施肥技术的研究^[6-12]。伟利国等设计的2F-6-BPI型变量配肥施肥机,可实时调整施肥量,进行变量配肥施肥作业,实现了配肥及变量的目标^[13],但对肥料掺混过程及其肥料颗粒掺混的均匀度仍缺乏研究。国内外学者近年来应用离散元法研究离散物料与农机工作部件的交互作用,Coetzee等采用离散元法分析了撒播颗粒的撒播过程及肥料在大田的均匀分布情况^[14]。van Liedekerke等采用离散元方法对肥料颗粒的旋转式撒播方式作了敏感性分析,并指出颗粒

较大影响^[15]。邱白晶等模拟水稻籽粒流与承载板 冲击过程,用于提高测产精度^[16]。陈进等^[17]分析 了气吸振动式精密排种器振动种盘内种群的三维运 动,获得了模拟参数对种子离散度的影响规律。

本文提出3种不同掺混腔结构设计方案,应用 散粒体离散元法对多种肥料颗粒的排肥、掺混和撒 播过程进行数值模拟^[15-16],分析多肥料掺混特性和 掺混腔的不同结构对颗粒掺混均匀度的影响。

1 配比变量施肥系统模型与仿真

1.1 配比变量施肥系统模型

配比变量施肥装置包括肥箱、排肥器、排肥管、 掺混腔和落肥管,如图1所示。其中掺混腔结构是 影响多种肥料均匀掺混的最重要影响因素之一,本 文提出3种不同掺混腔结构(图1)。其中,A型掺 混腔碰撞边缘为外凸曲线形,B型为直线形,C型为 内凹曲线形。3种掺混腔碰撞边缘大致涵盖了多数 掺混腔可能的形状,为主要的3种掺混腔类型。

1.2 物料参数的确定

为了确定肥料颗粒离散体分析的填充模型,从 3 种不同颗粒肥料(表1)中各随机取样100粒,用 精确到0.02 mm的千分卡尺进行三维尺寸测量,获 得肥料颗粒的三维尺寸平均值^[17]。肥料颗粒的等 效直径为

$$D = \sqrt[3]{LWT} \tag{1}$$

式中 L、W、T——肥料颗粒的长、宽、厚

收稿日期: 2013-07-31 修回日期: 2013-09-05

^{*} 国家自然科学基金资助项目(31101461)、山东省自然科学基金资助项目(ZR2012CM035)和山东科技发展计划资助项目 (2013GNC11203)和山东现代农业产业技术体系棉花创新团队资助项目(SDAIT-07-011-10)

作者简介:苑进,副教授,博士,主要从事智能农机装备技术研究,E-mail: jyuan@ sdau. edu. cn

图 1 肥量配比全变量施肥装置示意图 Fig. 1 New proportion and full variable fertilizing device (a)肥量配比施肥装置结构示意图 (b)掺混腔结构方案示意图 1.肥箱 2.排肥器 3.排肥管 4.掺混腔 5.落肥管

$$\phi = \frac{D}{L} \tag{2}$$

20

仿真时掺混腔材质设置为有机玻璃,试验系统 中其他相关材料参数范围如表2所示,不同材料之 间的接触力学参数范围如表3所示。

1.3 掺混仿真过程及试验设计

将3种不同类型掺混腔装配体分别导入颗粒离 散元仿真软件中,设置相关参数。为最终得到肥料

表 2	物料参数
-----	------

Tab. 2Material parameter

参数	肥料	机体	地面
泊松比	0. 23 ~ 0. 26	0.41 ~ 0.48	0.47~0.52
剪切模量/Pa	1×10^{7}	1×10^{6}	1×10^{8}
密度/(kg·m ⁻³)	$1\ 250\ \sim 1\ 400$	3 250 ~ 3 600	1 200

表 3 物料之间接触力学参数 Tab.3 Collisions parameters between different material

参数	肥料-肥料	肥料-机体	肥料-地面
恢复系数	0.08 ~0.11	0.41~0.50	0.01 ~0.03
静摩擦因数	0.28~0.32	0.26~0.33	1.23 ~1.28
动摩擦因数	0.21~0.29	0.18~0.22	1.22 ~1.26

经掺混装置排到地面的效果,首先设置一长为 1000 mm,宽为300 mm的几何体模拟地面。该几何 体位于落肥管下方,其中轴线与装置中轴线位于同 一竖直平面中;然后对应3个肥箱分别设置一个粒 子工厂,使其在仿真过程中分别装入氮肥、磷肥和钾 肥颗粒;最后设置排肥轮及装配体的运动特性。仿 真总时间设置为3.5 s,颗粒装入肥箱后,从1.3 s 开 始使排肥轮绕其中心轴以一定转速进行排肥。依据 相对运动原理,将装配体的运动转换为地面几何体 相对更加简单的运动,即设置地面从2 s 开始以 0.6 m/s 的速度相对排肥装置反方向直线运动。

改变排肥轮转速,使3种不同类型掺混装置以 60(°)/s为间隔在120~420(°)/s的转速范围内进 行6组仿真。颗粒掺混的仿真效果如图4所示。

回 · 秋世珍优历县双本 Fig. 4 Particle mixing simulation

2 掺混均匀度评价

为评价不同形状掺混腔下颗粒掺混均匀程度, 需设定其评价标准。选取一地面颗粒分布范围作为抽 样区域并对其划分网格,设置单元网格尺寸为30 mm × 35 mm,抽样区域按4行20列划分后如图5所示。

Fig. 5 Sampling area and meshing

统计每一抽样单元网格中氮肥、磷肥及钾肥颗

粒的数目 $n_N \ n_P \ n_K$,并将三者相加得到当前单元网格中总颗粒数目 n_i 。抽样区域中氮肥、磷肥及钾肥的颗粒总数表示为 $N_N \ N_P \ N_K$,三者相加后全部颗粒数目表示为 N_i 。

3 种肥料在当前单元网格中的配比为

$$\varphi_{(N,P,K)} = \frac{n_{(N,P,K)}}{n_t} \tag{3}$$

3种肥料的总体最佳配比为

$$\psi_{(N,P,K)} = \frac{N_{(N,P,K)}}{N_t}$$
(4)

肥料在当前单元格中的配比偏离度为

$$\lambda_{(N,P,K)} = \frac{\varphi_{(N,P,K)}}{\psi_{(N,P,K)}}$$
(5)

将各个肥料相对应的所有配比偏离度数据取标 准差,得到氮肥、磷肥及钾肥的配比标准差分别为 σ_{N} 、 σ_{P} 和 σ_{K} 。该标准差表示各单元格下肥料配比 偏离度与其最优值的总体偏离程度,配比标准差越 小说明肥料的掺混及分布越均匀。

3 模拟结果与机理分析

3.1 颗粒掺混过程

为了描述肥料颗粒在掺混腔中掺混度随时间变 化的特性,对掺混腔区域划分单元格。各取样单元 大小应适宜。单元格过大,则不具备局部代表性,单 元格数量过少,标准偏差将丧失统计意义;单元格过 小,则各取样单元内的肥料颗粒数太少,无法代表腔 中肥料的混合程度,导致结果偏差过大。结合混合 腔体大小,将混合腔区域划分为3×8×8个取样单 元,每个单元体积为16.5 mm×17.5 mm×20 mm,如 图6所示。通过分析各肥料颗粒在各取样单元中所 占的百分率,可以计算出各肥料颗粒在这些取样单 元中含量百分率的标准偏差为

$$\xi = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (c_i - \bar{c})^2}$$
(6)

$$\overline{c} = \frac{1}{N} \sum_{i=1}^{N} c_i \tag{7}$$

其中 *ξ*——标准偏差 N——取样单元数

c_i——取样单元 i 内某肥料颗粒质量分数

c——全部取样单元内某肥料颗粒平均质量 分数

根据肥料颗粒在掺混腔中的运动轨迹将掺混腔 分为自落区、交汇区、碰撞区、汇流区,各区域分布如 图7所示。从1.75s开始取不同时间点计算各肥料 颗粒在掺混腔中的标准偏差,得到肥料颗粒掺混特 性曲线^[18]。图8是排肥轮转速在300(°)/s下的掺 混特性曲线,其他转速下的肥料颗粒掺混特性曲线

图 6 掺混腔取样单元划分

Fig. 6 Division of the mixing chamber

图 7 掺混腔进程分区

有相同趋势。从掺混特性曲线可以直观地看到掺混 度随时间的变化情况,从而可以判断掺混效果及掺 混物的均匀程度。

图 9 为排肥轮以 300(°)/s 的转速仿真时 A、B、

C 型掺混腔中的粒子分布特征图片。肥料颗粒经排 肥管中加速后由排肥管出口进入掺混腔,3 股肥料 颗粒在掺混腔大致中部位置交汇而后进入主要的碰 撞掺混区。由图中粒子轨迹可以看出,氮肥颗粒与 钾肥颗粒在经过交汇点后首先与掺混腔壁面进行碰 撞,碰撞反弹力使氮肥及钾肥颗粒在掺混腔中随机 飞溅。随后磷肥颗粒与碰撞反弹的氮肥及钾肥颗粒 之间再次形成碰撞掺混。最后肥料颗粒汇流进入落 肥管排到地面。

3.2 仿真结果分析

仿真完成后,按图5所示选择抽样区域,统计并 计算后得到的氮肥、磷肥及钾肥的相关数据如表4 所示。由于篇幅所限,仅将排肥轮以300(°)/s转速 仿真后得到的数据列举如下。

对不同类型掺混腔的肥量配比全变量施肥装置 进行多次仿真并计算其结果均值,得到排肥轮不同 转速下的仿真结果如图 10 所示。

所进行的 6 组仿真中,每组次的排肥轮转速均 相同。对比各肥料的最佳均值数据,发现每组次下 不同类型掺混腔下仿真得到的氮、磷、钾肥的最佳均 值变异系数均很小,说明仿真过程中 3 种肥料的排 量十分稳定,可排除排量不稳定因素造成的配比标 准差对比失信的可能性。

对比图 10 相同组次下不同类型掺混腔仿真得出的配比标准差数据,可以得出,B型掺混腔情况下得出的 3 种肥料的配比标准差均小于另外两种情况,C型又要小于 A 型。配比标准差作为衡量掺混及分布均匀度的数据,其值越小,说明掺混及分布的均匀性越好。即肥料经 B 型掺混腔后得到的掺混及分布均匀性最好,C 型次之,A 型最差。

对比图 10 不同组次下相同类型掺混腔仿真得 出的配比标准差数据,可以得出,在一定转速范围 内,各类型掺混腔中氮、磷、钾 3 种肥料的配比标准 差随排肥轮转速的增加逐渐减小,即排肥轮转速在 一定范围内的增加可获得更加均匀的掺混肥料。

Fig. 9 Particle distribution diagram (a) A型(b) B型(c) C型

3.3 颗粒掺混机理解析

以排肥轮转速在 300(°)/s 时得到的仿真结果, 将氮肥与钾肥颗粒以流线的方式显示,A、B、C 3 种 类型掺混腔下粒子的运动轨迹如图 11 所示。

观察粒子在不同类型掺混腔中碰撞后的轨迹可

知,粒子的反弹角度与反弹后的水平速度分量对粒子碰撞后的分布范围及掺混腔中粒子的掺混均匀度 有重要影响。如图 12 所示,粒子以相同速度 v 及相同入射角 γ 碰撞某一点,碰撞后形成不同的反弹角 δ_1 、 δ_2 、 δ_3 ,其中 $\delta_1 > \delta_2 > \delta_3$ 。假设反弹后粒子的水平

	表 4	仿真数据	后处理
Tab. 4	Simu	lation data	post-processing

	单元格氮	单元格磷	单元格钾	单元格总	各单元格	氮肥最	氮肥配比	氮肥配比	各单元格	磷肥最佳
网格	肥颗粒数	肥颗粒数	肥颗粒数	颗粒数目	氮肥配比	佳配比	偏离度	标准差	磷肥均值	均值
	$n_{\rm N}$	$n_{\rm P}$	$n_{\rm K}$	n_t	$\psi_{ m N}$	$\Psi_{ m N}$	$\lambda_{\rm N}$	$\sigma_{ m N}$	$\psi_{ m P}$	$\Psi_{ m P}$
1	16	18	21	55	0. 291	0.401	0.725	0.2123	0.327	0.267
2	23	15	16	54	0.426		1.062		0.278	
3	22	14	13	49	0.449		1.119		0.286	
4	23	20	15	58	0.397		0.989		0.345	
5	19	8	24	51	0.373		0. 929		0.157	
6	20	11	14	45	0.444		1.108		0.244	
7	20	13	18	51	0.392		0.978		0.255	
÷	÷	÷	÷	÷	÷		÷		÷	
74	20	9	20	49	0.408		1.017		0.184	
75	32	11	15	58	0.552		1.375		0.190	
76	27	13	16	56	0.482		1.202		0.232	
78	26	13	23	62	0.419		1.045		0.210	
79	18	11	7	36	0.500		1.246		0.306	
80	13	10	18	41	0.317		0.790		0.244	
总计	763	507	632	1902						

(a) A 型 (b) B 型 (c) C 型

(a) A 型 (b) B 型 (c) C 型

速度分量相同,则反弹角越大,粒子反弹后的分布范围也就越大。而从图 10 可以得出,氮肥与钾肥在不同类型掺混腔中碰撞后形成的反射角 $\delta_A > \delta_B > \delta_C$ 。

图 12 反射角与反弹覆盖面积关系 Fig. 12 Relationship between reflection angle and rebound coverage area

为了得到氮肥与钾肥颗粒与掺混腔碰撞后的水 平速度分量对颗粒掺混度的影响,统计碰撞后粒子 的水平速度分量如表6所示。表中正负号表示粒子 的速度方向。

表 6	氮肥与钾肥颗粒碰撞后水平速度分量
-----	------------------

Tab. 6 N and P fertilizer particle collision statistics

of horizontal velocity m/s						
A 型扌	A型掺混腔 B型掺混腔		参混腔	C 型排	参混腔	
氮肥颗粒	钾肥颗粒	氮肥颗粒	钾肥颗粒	氮肥颗粒	钾肥颗粒	
$v_{\rm A,N}$	$v_{\mathrm{A,K}}$	$v_{\rm B,N}$	$v_{\mathrm{B,K}}$	$v_{\mathrm{C,N}}$	$v_{\mathrm{C,K}}$	
- 1. 172	0.495	-0.746	1.251	-0.757	1.147	
-0.315	1.216	- 0. 979	0.805	-1.743	0.236	
-0.704	0.542	- 1. 319	1.071	- 1. 462	1.147	
- 1. 072	1.224	-0.745	0.381	- 0. 633	0. 579	
- 0. 618	0.498	-1.417	1.109	- 0. 768	1.086	
- 0. 395	1.417	-0.838	0.836	- 0. 393	0. 988	
- 0. 343	0.141	- 0. 729	0.356	-0.778	0.609	
÷	÷	÷	÷	÷	÷	
- 1. 088	0.419	-1.231	0.366	- 0. 883	1.017	
- 1. 057	0.711	-0.564	1.180	-0.257	1.099	
-0.744	0.458	- 1. 069	0.418	- 1. 226	0.138	
- 1. 153	1.111	-0.846	0.545	-0.815	1.035	
- 0. 497	0.645	- 0. 660	0.631	-0.544	0. 201	
- 0. 849	1.348	-1.421	1.226	-0.546	0.978	
÷	:	:	÷	÷	:	
总计 88	76	92	73	83	70	

根据表 6 中的数据,将速度以 0.15 m/s 为梯度 统计各速度梯度范围内的粒子数,并计算各速度梯 度范围内的粒子数占总粒子数的百分比制作直方 图。

图 13 为氮肥颗粒碰撞后各水平速度梯度数量 百分占比,其中 A 型掺混腔内氮肥颗粒水平速度分 量集中在 -0.6 m/s 处, B 型与 C 型掺混腔中氮肥颗 粒水平速度分量分别集中在 -0.75 m/s 与 -0.9 m/s 处。其速度绝对值 $v_A < v_B < v_C$,综合氮肥在不同类型掺混腔中碰撞后形成的反射角 $\delta_A > \delta_B > \delta_C$,可以得到氮肥颗粒在碰撞后形成的分散面积占 $A \setminus B \setminus C$ 型掺混腔碰撞区总面积的百分比分别为 81%、93% \times 84%。

同样地,图 14 为钾肥颗粒碰撞后各水平速度梯 度数量百分占比,钾肥颗粒水平速度分量的分布趋 势及钾肥在不同类型掺混腔中碰撞后形成的反射角 大小趋势与氮肥类似,最终得出钾肥颗粒在碰撞后 形成的分散面积占 A、B、C 型掺混腔碰撞区总面积 的百分比分别为 78%、91% 和 82%。

颗粒在碰撞后形成的分散面积掺混腔碰撞区总 面积的百分比越大,则颗粒之间的交叉区域及碰撞 概率也就越大,该百分比数值与氮肥及钾肥颗粒排 到地面以后其配比标准差有着相同的趋势。

磷肥颗粒在掺混腔中的掺混及分布主要受氮肥 及钾肥颗粒在与掺混腔壁面碰撞反弹后对其形成的 二次碰撞的影响。从 1.9 s 开始,以 0.05 s 为一个 时间梯度,统计得到磷肥颗粒在 A、B、C 3 种类型掺 混腔中所受碰撞次数的曲线如图 15 所示。

由图 15 可知,A 型掺混腔中磷肥颗粒所受碰 撞次数与 B 型大致相当,并大于 C 型掺混腔中磷 肥颗粒所受碰撞次数。虽然掺混腔中磷肥颗粒所 受碰撞次数大致相当,但 A 型掺混腔的碰撞区域 面积要大于 B 型掺混腔,最终导致磷肥在 B 型掺 混腔中碰撞后得出的配比标准差要小于 A 型掺混

图 15 磷肥颗粒在 A、B、C 型掺混腔中所受碰撞次数曲线 Fig. 15 Collision frequency curve of P particle in A, B, C type mixing chamber

腔。对于 C 型掺混腔, 氮肥与钾肥在经碰撞后形成的反弹角 δ_c较小, 两种肥料颗粒大多直接冲向掺混腔下的落肥管, 从而导致磷肥颗粒所受的碰 撞次数大大减少, 最终磷肥在 C 型掺混腔中碰撞 后得出的配比标准差小于与之碰撞区域面积相差 不大的 B 型掺混腔。

4 结论

(1)B型掺混腔得到的掺混均匀性最好,C型次之,A型最差。

(2)掺混腔碰撞壁面形状影响颗粒碰撞后的反 弹角度,颗粒反弹角度又与碰撞后颗粒的散布面积 直接相关。C型掺混腔中颗粒碰撞后反弹角度由于 过小,导致大多数颗粒直接冲向掺混腔底部。相比 之下,A型和B型掺混腔内颗粒碰撞后的反弹角相 对较大,更有利于颗粒在掺混腔中的散布。

(3)颗粒碰撞后水平分速度是影响颗粒碰撞反 弹后散布面积的另一个重要因素。碰撞后水平分速 度越大,颗粒在水平方向的运动距离就越大,从而颗 粒散布面积就越大,反之亦然。

(4)掺混腔面积(确切说是碰撞区域面积)是影 响颗粒掺混均匀度的关键。在颗粒碰撞后散布面积 相同的情况下,面积较小的掺混腔内颗粒之间更易 出现二次碰撞,使颗粒之间掺混的更加均匀。另外, 颗粒散布面积占掺混腔碰撞区域面积的百分比与颗 粒配比标准差呈反比,其值在一定程度上亦可表明 颗粒的掺混均匀度。

(5)在一定转速范围内,肥料配比标准差随排 肥轮转速的增加而减小,即排肥轮转速在一定范围 内的增加可提高肥料的掺混均匀度。

参考文献

- 1 Torbett J C, Roberts R K, Larson J A, et al. Perceived improvements in nitrogen fertilizer efficiency from cotton precision farming [J]. Computers and Electronics in Agriculture, 2008, 64(2): 140 - 148.
- 2 陈贤友,吴良欢,韩科峰,等. 包膜尿素和普通尿素不同掺混比例对水稻产量与氮肥利用率的影响[J]. 植物营养与肥料学报,2010,16(4):918-923.

Chen Xianyou, Wu Lianghuan, Hang Kefeng, et al. Effects of different mixture rates of coated urea and prilled urea on rice grain yield and nitrogen use efficiency[J]. Acta Metallurgica Sinica, 2010,16(4): 918-923. (in Chinese)

- 3 吴巍.科学施肥技术[M].北京:科学出版社,1998.
- 4 何勇.精细农业[M].杭州:浙江大学出版社,2003.
- 5 苑进,刘雪美,张晓辉.肥量配比全变量施肥装置及其控制方法:中国,201110385031.X[P]. 2011-11-28.
- 6 张书慧,马成林,吴才聪,等.一种精确农业自动变量施肥技术及其实施[J].农业工程学报,2003,19(1):129-131. Zhang Shuhui, Ma Chenglin, Wu Caicong, et al. Development and application of a variable rate fertilizer appliator for precision agricultural [J]. Transactions of the CASE, 2003, 19(1):129~131. (in Chinese)
- 7 苑进,刘成良,古玉雪,等.基于相关向量机的双变量施肥播种控制序列优化[J].农业机械学报,2011,42(增刊):184-189.

Yuan Jin, Liu Chengliang, Gu Yuxue, et al. Bivariate fertilization control sequence optimization based on relevance vector machine [J]. Transactions of the Chinese Society for Agricultural Machinery, 2011,42(Supp.): 184 - 189. (in Chinese)

- 8 Yuan Jin, Liu Chengliang, et al. Gaussian processes based bivariate control parameters optimization of variable-rate granular fertilizer applicator[J]. Computers and Electronics in Agriculture, 2010, 70(1): 33-41.
- 9 刘阳春,张小超,伟利国,等.一种变量施肥技术的实现及其台架试验[J].农业机械学报,2010,41(9):159-162.
 Liu Yangchun, Zhang Xiaochao, Wei Liguo, et al. Design and experiment of a variable rate fertilization control system [J].
 Transaction of the Chinese Society for Agricultural Machinery, 2010,41(9):159-162. (in Chinese)
- 10 王秀,赵春江,孟志军,等.精准变量施肥机的研制与试验[J].农业工程学报,2004,20(5):114-117.
 Wang Xiu, Zhao Chunjiang, Meng Zhijun, et al. Design and experiment of variable rate fertilizer applicator[J]. Transactions of the CASE, 2004,20(5):114-117. (in Chinese)
- 11 孟志军,赵春江,付卫强,等.变量施肥处方图识别与位置滞后修正方法[J].农业机械学报,2011,42(7):204-209. Meng Zhijun, Zhao Chunjiang, Fu Weiqiang, et al. Prescription map identification and position lag calibration method for variable rate application of fertilizer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011,42(7):204-209. (in Chinese)
- 12 张书慧,齐江涛,廖宗建,等. 基于 CPLD 的变量施肥控制系统开发与应用[J]. 农业工程学报, 2010, 26(8):200-204.

Zhang Shuhui, Qi Jiangtao, Liao Zongjian, et al. Research and application of control system for variable rate fertilizer applicator based on CPLD[J]. Transactions of the CSAE, 2010, 26(8): 200 - 204. (in Chinese)

- 13 伟利国,张小超,苑严伟,等. 2F-6-BP1 型变量配肥施肥机的研制与试验[J].农业工程学报,2012,28(7):14-18.
 Wei Liguo, Zhang Xiaochao, Yuan Yanwei, et al. Design and experiment of 2F-6BP1 variable rate assorted fertilizer applicator [J]. Transactions of the CASE, 2012,28(7):14-18. (in Chinese)
- 14 Coetzee C J, Lombard S G. Discrete element method modelling of a centrifugal fertiliser spreader [J]. Biosystems Engineering, 2011, 109(4): 308 - 325.
- 15 van Liedekerke P, Tijskens E, Ramon H. Discrete element simulations of the influence of fertiliser physical properties on the spread pattern from spinning disc spreaders [J]. Biosystems Engineering, 2009, 102(4): 392 - 405.
- 16 邱白晶,姜国微,杨宁,等.水稻籽粒流对承载板冲击过程离散元分析[J].农业工程学报,2012,28(3):44-49. Qiu Baijing, Jiang Guowei, Yang Ning, et al. Discrete element method analysis of impact action between rice particles and impact-board[J]. Transactions of the CSAE, 2012, 28(3): 44-49. (in Chinese)
- 17 陈进,周韩,赵湛,等. 基于 EDEM 的振动种盘中水稻种群运动规律研究[J]. 农业机械学报, 2011, 42(10):79-83. Chen Jin, Zhao Zhan, et al. Analysis of rice seeds motion on vibrating plate using EDEM[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011,42(10):79-83. (in Chinese)
- 18 邱忠财.基于颗粒离散元法的分散混合数值模拟[D].广州:华南理工大学,2012.
- 19 杨洋,唐寿高.颗粒流的离散元法模拟及其进展[J].中国粉体技术,2006,12(5):38-43. Yang Yang, Tang Shougao. Discrete element method simulation of granular flow and its advances[J]. Chinese Powder Science and Technology, 2006, 12(5):38-43. (in Chinese)
- 20 吕昊. 基于离散元法的排肥数字化设计方法研究 [D]. 长春;吉林大学,2008.
- 21 张琴,曾云,张慢来,等. 肥料颗粒混合技术研究[J]. 机械,2012,39(7):13-15.
- Zhang Qin,Zeng Yun,Zhang Manlai, et al. Study on mixing technology of manure [J]. Machinery, 2012,39(7):13-15. (in Chinese)

Simulation of Multi-fertilizers Blending Process and Optimization of Blending Cavity Structure in Nutrient Proportion of Variable Rate Fertilization

Yuan Jin^{1,2} Liu Qinhua¹ Liu Xuemei^{1,2} Zhang Teng¹ Zhang Xiaohui¹

(1. School of Mechanical and Electronic Engineering, Shandong Agricultural University, Taian 271018, China

2. Shandong Provincial Key Laboratory of Horticultural Machinery and Equipment, Taian 271018, China)

Abstract: The blending process of granular multi-fertilizer flows in the nutrient proportion of variable rate technology (NPVRT) lacks mechanism research at present, and the blending cavity structure is the most important factor influencing blending uniformity of a variety of fertilizer. In this paper, using discrete element method, a variety of granular fertilizer, blending and seeding process based on three different blending cavity designs are simulated, and then the multi-fertilizers blending process and its uniformity characteristics are analyzed under three different structures. The computing results and mechanism analysis show that the collision wall shape of blending cavity affects rebound angle and horizontal velocity after particle collision, and both of factors affect the dispersed area of post-collision particles in the blending cavity. B type of blending cavity structure ensures optimum blending uniformity. When fertilizing flow increases, the fertilizer blending uniformity also increases accordingly.

Key words: Nutrient proportion of variable rate technology Blending cavity Discrete element method Blending uniformity Structure optimization