-moment Control Based on Active Braking
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The cascade structure of control system consisting of yaw-moment controller and wheel slip controller was adopted to develop vehicle stability control (VSC). An ideal model with the best performance of side-slip angle and yaw-rate was established. The strategy of both the forward-feed control and back-feed control of tracking the desired model was employed. The linear quadratic regulator (LQR) theory was exploited for yaw-moment controller. Ideal slip assignment model was proposed to determine the ideal value for slip controller from the yaw moment acquired from the yaw-moment controller. The fuzzy logic control theory was applied to slip controller. An 8-DOF nonlinear vehicle model was constructed based on Matlab/Simulink platform, and then simulation was performed under low friction and high friction road condition respectively. The results show that the proposed control algorithm can achieve the desired yaw-moment, the side-slip angle and yaw-rate can track the ideal model effectively. It can achieve good transient and steady response, and improve vehicle handling stability.

    Reference
    Related
    Cited by
Get Citation
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online:
  • Published:
Article QR Code