doi:10.6041/j.issn.1000-1298.2020.S1.040

基于迁移学习的温室番茄叶片水分胁迫诊断方法

赵奇慧¹ 李 莉¹ 张 $森^1$ 蓝 天² SIGRIMIS N A³

(1. 中国农业大学农业农村部农业信息获取技术农业农村部重点实验室,北京 100083;

2. 中国农业大学现代精细农业系统集成研究教育部重点实验室, 北京 100083;

3. 雅典农业大学农业工程系, 雅典 11855)

摘要:为实时诊断番茄叶片水分胁迫程度,提出一种叶片水分胁迫程度的诊断方法,该诊断方法包括 2 部分:叶片 分割和水分胁迫程度分类。采用以 ResNet101 为特征提取卷积网络的 Mask R - CNN 网络对背景遮挡的番茄叶片 进行实例分割,通过迁移学习将 Mask R - CNN 在 COCO 数据集上预训练得到的权重用于番茄叶片的实例分割,保 留原卷积网络的训练参数,只调整全连接层。利用卷积网络提取的特征,可将番茄叶片分割视为区分叶片与背景 的一个二分类问题,以此来分割受到不同水分胁迫的番茄叶片图像。利用微调后的 DenseNet169 图像分类模型进 行叶片水分胁迫程度分类,通过迁移学习将 DenseNet169 在 ImageNet 数据集上预训练得到的权重用于番茄叶片水 分胁迫程度的分类,保持 DenseNet169 卷积层的参数不变,只训练全连接层,并对原 DenseNet169 全连接层进行了修 改,将分类数量从 1 000 修改为 3。试验共采集特征明显的无水分胁迫、中度胁迫和重度胁迫 3 类温室番茄叶片图 像,共 2 000 幅图像,建立数据集,并进行模型训练与测试。试验结果表明,训练后的 Mask R - CNN 叶片实例分割 模型在测试集上对于单叶片和多叶片的马修斯相关系数平均为 0.798,分割准确度平均可达到 94.37%。经过 DenseNet169 网络训练的叶片水分胁迫程度分类模型在测试集上的分类准确率为94.68%,与 VGG - 19、AlexNet 这 2 种常用的深度学习分类模型进行对比,分类准确率分别提高了 5.59、14.68 个百分点,表明本文方法对温室番茄 叶片水分胁迫程度实时诊断有较好的效果,可为构建智能化的水胁迫分析技术提供参考。

关键词:温室番茄;水分胁迫;深度学习;图像分割;图像分类

中图分类号: TP391.4; S626 文献标识码: A 文章编号: 1000-1298(2020) S1-0340-08

Water Stress Diagnosis Algorithm of Greenhouse Tomato Based on Fine-tuning Learning

ZHAO Qihui¹ LI Li¹ ZHANG Miao¹ LAN Tian² SIGRIMIS N A³

(1. Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China

2. Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education,

China Agricultural University, Beijing 100083, China

3. Department of Agricultural Engineering, Athens Agricultural University, Athens 11855, Greece)

Abstract: Leaf water stress degree of real-time diagnosis was one of the methods of scientific irrigation. A kind of leaf water stress degree classification method was putted forward, for feature extraction based on ResNet101 convolution Mask R – CNN networks, the blade was firstly divided, through the study of the migration Mask R – CNN on pre training to get the weight of COCO data set for instance segmentation of tomato leaves, the original convolution network training parameters were retained, and only the connection layer was adjusted. By using the features extracted from the convolutional network, tomato leaf segmentation could be regarded as a dichotomy problem to distinguish the leaf from the background, so as to segment tomato leaf images under different water stresses. Then after using the fine-tuning DenseNet169 leaf water stress degree classification image classification model, through the study of the migration DenseNet169 ImageNet data set for the training to get the weight for the classification of tomato

收稿日期: 2020-08-10 修回日期: 2020-09-16

基金项目:国家重点研发计划项目(2019YFD1001903、2016YED0201003)

作者简介:赵奇慧(1995—),女,硕士生,主要从事精细农业系统集成研究, E-mail: lauras. zhao@ foxmail. com

通信作者: 李莉(1978—),女,副教授,博士生导师,主要从事精细农业系统集成研究, E-mail: lily@ cau. edu. cn

leaf water stress degree, remain unchanged, the parameters of DenseNet169 convolution only trained the last fully connection layer, and modified the original DenseNet169 fully connection layer, amended the classification number from 1 000 to 3. In the experiment, a total of 2 000 images were collected of leaves of greenhouse tomatoes with obvious characteristics, including no water stress, moderate stress and severe stress. A data set was established and the model was trained and tested. Experimental results showed that the average Mathews correlation coefficient (MCC) of the Mask R – CNN blade instance segmentation model after training was 0.798 for single and multiple leaves on the test set, and the average accuracy (ACC) could reach 94.37%. After training of DenseNet169 leaf water stress, the degree of accuracy of classification model on the test set was 94.68%, and compared with that of the VGG – 19 and AlexNet, the classification model accuracy was increased by 5.59 percentage points and 14.68 percentage points, respectively, and the average operation time of method to detect a 2 million-pixel image was 1.2 s, but it had good effect on greenhouse tomato leaf water stress degree real-time diagnosis, which could provide reference for building intelligent technology to water stress analysis.

Key words: greenhouse tomato; water stress; deep learning; image segmentation; image classification

0 引言

水分胁迫是影响番茄植株生长发育的主要因素,水分亏缺会引起番茄脐腐病发病率升高,也影响 果实中营养物质的含量,进而导致减产^[1]。

叶片是番茄植株进行蒸腾作用的主要器官,是 水分胁迫下番茄表型中反应最为敏感的器官,番茄 叶片的颜色、纹理、形状特征能够较好地反映植物的 水分亏缺状况^[2]。文献[3]利用长短时记忆网络 (Long short term memory network, LSTM),将环境数 据和图像数据这2种不同模态的数据进行融合,预 测作物茎粗的变化量。文献[4]利用随机森林 (Random forest, RF)和决策树(Decision tree, DT)的 方法分别对葡萄叶片水势进行回归预测,预测的决 定系数为0.83。文献[5]将环境数据和叶面积指数 融合,采用 RF 的方法对植株的当日蒸腾量进行回 归分析,预测值和实际值之间的决定系数为0.94。 文献[6]研究了小麦叶片气孔导度、蒸腾速率和土 壤体积含水率与小麦冠层叶片的作物水分胁迫指数 (Crop water stress index, CWSI)的关系,分析了土壤 体积含水率与 CWSI 的相关性,二者间的决定系数 为 0.8。

以上研究大多是在实验室内较为理想栽培环境 下获取的图像信息,且数据获取方式较为复杂,本文 重点解决在实际温室种植番茄信息获取时背景存在 遮挡条件下,通过图像处理的方法诊断温室番茄叶 片的水分胁迫程度。首先利用 Mask R - CNN^[7]网 络分割番茄叶片,然后使用基于 DenseNet169^[8] (Dense convolutional network)的迁移模型提取叶片 特征,对叶片水分胁迫程度进行分类,并与 VGG -19^[9](Visual geometry group)和 AlexNet^[10]经典图像 分类深度学习模型进行对比,以评估目前叶片水分 胁迫程度诊断领域常用的各算法性能,以期为构建 智能化的水胁迫分析技术提供参考。

1 材料与方法

1.1 试验设计

该试验于2019年6-7月在中国农业大学涿州 试验基地的日光温室(39°N,115°97′E)进行。温室 布置为南北走向,尺寸为36m×10.3m,属于半干旱 半湿润季风气候区。试验品种为"粉冠"番茄,以基 质袋的方式进行栽培,袋容积4L,种植容积3.5L。 栽培基质为草炭、蛭石、珍珠岩,按体积比4:2:1均 匀混合^[11]。使用 EC5 型基质湿度传感器监测基质 中的水分状况,根据传感器监测的实际情况确定灌 概量。采用滴灌方式,滴箭头插入到基质袋里,其位 置贴近植株根部,间距与株距相同。施鸡粪 3 t/hm²、施史丹利番茄水溶复合肥"第四元素" (N+P,O₅+K,O 大于等于 60% (20 - 20 - 20 + TE),其中,40%为基肥、60%为追肥^[12],追肥分别 在开花结果初期和盛期分2次施入。本试验设置3 个水分处理:正常灌概无水分胁迫处理 T1,中度水 分胁迫处理 T2,重度水分胁迫处理 T3,分别为田间 持水量的 70% ~ 80%、50% ~ 60%、30% ~ 45%。 每个水分处理12株番茄,共3个种植槽,根据基质 水分传感器的监测手动灌溉,使3组基质水分保持 在相应的范围内,水分处理后的第7天开始进行拍 照采集数据^[13]。

1.2 基质含水率测定

基质含水率可作为温室番茄灌溉的参考依据。 使用 EC5 型水分传感器测量基质体积含水率,该传 感器是基于频域法设计的水分传感器,性能稳定,精 度较高且成本较低,满足本试验的测量需求。水分 传感器使用前需经过标定,配置干燥至饱和的8种 不同含水率的基质样本,通过 EC5 型传感器采集不 同含水率对应的电压,每5s记录一次,重复5次,剔 除异常数据,使用干燥法测量实际的体积含水率进 行标定。确定实际含水率与传感器测得的含水率之 间关系的方程

$$W = w\rho + d \tag{1}$$

W——传感器测得的基质体积含水率,% 式中

- w——采用干燥法测得的实际基质体积含水 率.%
 - 一传感器修正系数 ρ —

d——传感器偏差

1.3 数据采集

图像采集试验场景如图 1 所示。选用松下 2100 万像素 GY2100E 型相机,镜头变焦 2.4~ 12 mm,相机设置为光圈优先自动曝光模式。相机 安装在三脚架顶部,镜头与拍摄对象之间的距离调 整为5~20 cm。将相机用数据线与计算机相连(试 验硬件平台为 CPU Core - i5, GTX 1080Ti GPU, 内存 8 GB。环境配置为: Tensorflow1.9.0, Python 3.6, keras 2.2.0, Ubuntu 18.04), 利用图1所示图像采集 装置对各种水分处理番茄叶片进行拍摄。每次进行 图像采集时,均通过调整三脚架来确保相机距番茄 目标叶片前方(0.2±0.1) m 处,根据实际拍摄情况 会对三脚架的位置进行适当调整。为减少背景叶片 对目标叶片的干扰,及对分类结果的影响,在拍摄图 像时用黑色木板对背景进行遮挡。

图 1 番茄叶片图像采集试验场景图 Fig. 1 Experiment scene diagram of tomato leaf image acquisition

1. 背景木板 2. 目标叶片 3. 照相机 4. 三脚架 5. 种植槽 6. 基质袋

1.4 算法模型

对采集到的番茄叶片图像进行标注制作数据 集,训练 Mask R-CNN 分割网络。对叶片成功分割 后,将获得的叶片图像制作分类模型的数据集,然后 以 DenseNet169 网络作为特征提取器,使用迁移学 习方法提取叶片图像中用于水分胁迫程度分类的特 征,来训练分类网络。整体流程如图2所示。

1.4.1 Mask R - CNN 图像分割网络

Mask R - CNN^[7] 网络 2017 年由 KAIMING 提

Fig. 2 Overall flow chart

出,其具体实现过程是采用 Faster R - CNN^[14]的方 法进行目标检测,再用全卷积神经网络(Fully convolutional networks, FCN)^[15]进行分割。首先采 用 ResNet101^[16]得到特征图,再通过区域建议网络 (Region proposal network, RPN)得到检测边界框。 之后使用 ROI Align 进行特征对齐,然后对每一个 特征对齐后的感兴趣区域使用 FCN 来预测目标的 类别,最终得到实例分割结果。Mask R-CNN 是 Faster R - CNN 扩展而来,将 Faster R - CNN 中 ROI Pool 改为 ROI Align,并在与边界框识别并行的地方 增加一个预测分支,来预测每一个感兴趣区域的分 割掩膜。

本文通过迁移学习将 Mask R-CNN 在 COCO 数据集上预训练得到的权重用于番茄叶片的实例分 割,保留原卷积网络的训练参数,只调整全连接层。 利用卷积网络提取的特征,可将番茄叶片分割视为 区分叶片与背景的一个二分类问题(1属于叶片,0 属于背景)。Mask R-CNN 网络结构图如图 3 所 示。

损失函数方面,整个网络采用多任务损失的形 式,总体损失函数为^[17]

$$L = L_{cls} + L_{mask}$$
 (2)
式中 L—分割网络总体损失函数
 L_{cls} —分类损失函数
 L_{box} —回归损失函数
 L_{mask} —分割损失函数
分类层用于分类,分类损失函数为
 $L_{cls} = -lgp_{u}$ (3)

$$s_{s} = -\lg p_{u} \tag{3}$$

Fig. 3 Mask R – CNN image segmentation network structure

式中 p_u——预测为正样本的概率

回归用来定位候选区域的位置,回归损失函数 为

$$L_{\text{box}} = \sum_{i=1}^{N} \text{smooth}(t_i^u - v_i)$$
(4)

smooth(x) =
$$\begin{cases} 0.5x^2 & (|x| < 1) \\ |x| - 0.5 & (|x| \ge 1) \end{cases}$$
(5)

式中 *tⁱ*_{*i*} → 预测的平移缩放参数 *v_i* → 真实的平移缩放参数 smooth() → 损失函数 *N* → 类别数量 分割损失函数为

$$L_{\text{mask}} = \left[Km^2 \right]_i \tag{6}$$

式中 m — 掩膜分支对每个 ROI 产生的 m × m 掩 膜

K——分类物体的种类数

[]---激活函数

1.4.2 DenseNet 图像分类网络

DenseNet 网络^[8]于2017年提出,是一种具有密 集连接块(Dense block)的卷积神经网络。在该网 络中,任何2层之间都有直接的连接,网络每一层的 输入,都是前面所有层输出的并集,而该层输出的特 征图会成为该层后面所有层的输入,Dense block 模 块如图4所示。

DenseNet 的密集连接机制需要保证所有输出特征图的尺寸相同。DenseNet 网络中使用密集连接模块与过渡模块相结合的结构,其中密集连接块的每个层的特征图尺寸是完全一样的,而过渡模块是连接2个相邻的密集连接模块,然后通过池化操作使

输出特征图的尺寸变小^[18]。

本文保持 DenseNet169 卷积层的参数不变,只 训练全连接分类层,并对原 DenseNet169 最后一层 进行了修改,将分类数量从 1 000 修改为 3。 DenseNet169 具体网络参数见表 1。

表1 微调后的 DenseNet169 的网络参数 Tab.1 Network structure of DenseNet169

层名	输出尺寸	网络参数			
卷积层	112×112	$7 \times 7 \operatorname{cov}$			
池化层	56×56	3×3 最大池化			
Dense block 层(1)	56×56	(1 × 1,3 × 3) × 6			
	56×56	1×1			
Transition 层(1)	28×28	2×2平均池化			
Dense block $ eq (2) $	28×28	(1 × 1 , 3 × 3) × 12			
	28×28	$1 \times 1 \operatorname{cov}$			
Transition 层(2)	14×14	2×2平均池化			
Dense block 层(3)	14×14	(1 × 1 , 3 × 3) × 32			
	14×14	$1 \times 1 \operatorname{cov}$			
Transition 层(3)	7 × 7	2×2平均池化			
Dense block 层(4)	7 × 7	(1 × 1 , 3 × 3) × 32			
人达拉八米口	1 × 1	7×7全局平均池化			
全连拔分类层		3D 全连接 sotfmax			

1.5 网络训练

1.5.1 Mask R-CNN 实例分割网络训练

单 GPU 训练,初始学习率设置为 0.001,每批次 处理的图像数量设置为 200,动量(Momentum)设置 为 0.9,权值衰减值设置为 0.000 1,最大训练周期 数(epoch)设置为 60,以人工标注的图像做基准,共 有 2 种评价指标^[19]:

(1)马修斯相关系数(Matthews correlation coefficient, MCC), MCC的值在[-1,1]之间波动, 其数值越大, 分割越准确。定义为

$$M_{cc} = \frac{T_{P}T_{N} - F_{P}F_{N}}{\sqrt{(T_{P} + F_{P})(T_{P} + F_{N})(T_{N} + F_{P})(T_{N} + F_{N})}}$$
(7)

式中 M_{cc}——马修斯相关系数

T_p——人工标注的叶片区域像素和自动分割 的叶片区域像素的重合数量(真正)

F_p——人工标注的背景区域像素被自动分

割的叶片区域像素的数量(假正)

- F_N——人工标注的叶片区域像素被自动分 割为背景区域像素的数量(假负)
- *T_N*——人工标注的背景区域像素和自动分割的背景区域像素的重合数量(真负)
- (2)分割准确度(Accuracy, ACC)计算公式为

$$A_{cc} = \frac{f_0}{f} \times 100\% \tag{8}$$

式中 Acc--准确度

f——人工分割的叶片区域像素数量

f₀——人工分割区域与 Mask R - CNN 算法 分割后的区域的交集像素数量

1.5.2 分类网络训练

单 GPU 训练,将输入图像的尺寸设置为 224 像 素×224 像素,学习率设置为 0.001,优化函数采用 的是 Adam,然后将训练集和测试集的图像,输入到 微调后 DenseNet169 图像分类模型。训练周期数设 置为 20,每次包含 80 幅图像,每轮次分 16 个批次 进行。为验证本研究所提算法的有效性,在与上述 参数配置相同情况下,并与 VGG - 19、AlexNet 图像 分类模型分别进行对比。

2 结果与讨论

2.1 EC5 型传感器标定及含水率变化

先将基质干燥 48 h,置于标有刻度的量杯。用 量筒量取不同体积的水,来配置样本,使用 EC5 型 水分传感器测量基质的含水率^[20],实际含水率与传 感器测量含水率之间的关系如图 5 所示。

$$W = 0.997 \ 1w + 0.105 \ 8 \tag{9}$$

决定系数为 0.983 2, 偏差为 0.105 8。

根据校准后的 EC5 型传感器测得基质的田间 持水量为 64.33%,调萎含水率为 15.85%。因春夏 季节天气炎热,为避免植株枯死,在水分处理后的第 7天开始采集图像数据。 无胁迫处理 T1 7 d 内基质平均含水率为 48.24%(田间持水量的 75%),中度水分胁迫处理 T2 7 d 内基质平均含水率为 34.73%(田间持水量 的 54%),重度水分胁迫 T3 7 d 内基质平均含水率 为 21.87%(田间持水量的 34%),3 种水分处理后 7 d 内基质平均含水率存在明显差异,且传感器测得 的基质含水率都大于枯萎含水率。

2.2 数据集

综合考虑实际情况,于 2019 年 6—7 月进行了 图像采集。共采集无胁迫、中度胁迫、重度胁迫 3 种 类型样本图像 2 000 幅,包含番茄叶片约为 3 500 片,并且 3 种类型的样本图像中均存在单叶或多叶 等情况。将所采集图像批量设置为 jpg 格式的 RGB 图像(分辨率为 3 000 像素 × 4 000 像素),建立试验 样本数据集。图 6 为采集到的部分样本图像。

	K	
(a) 单叶无胁迫	(b) 单叶中度胁迫	(c) 单叶重度胁迫
(d) 多叶无胁迫	 (e) 多叶中度胁迫 	(f) 多叶重度胁迫
图6 不	同水分情况的釆茄	计计图像
国・小	四小刀 旧近时笛加	「」「国際
Fig. 6 Image of	tomato leaves with o	lifferent moisture
	conditions	

对所采集的2000 幅番茄样本图像按照2种采 集条件和3种水分胁迫状况分别进行数量统计,如 表2所示。其中2种采集条件图像中均包含3种水 分处理类型,图像数据集的多样性能够促进网络训 练学习的有效性,提高叶片的分割分类精度,提升模 型泛化能力。

2.3 分割网络数据集制作

该网络的训练集格式来自于 COCO 数据集,采 用在线图像标注工具 VIA(VGG Image Annotator)制 作 Mask R - CNN 实例分割网络数据集,标注结果用 JSON 数据格式保存,数据集包含训练集 1 500 幅, 验证集 500 幅,比例大致为 3:1。由于 Mask R - CNN 网络自身的特点,图像的宽高尺寸要能整除 64。在 图像数据集制作之前,需要将数据集中的每幅图像 幅

表	2	图像	象数量统	计
Tab. 2	Ima	ge q	uantity	statistics

图像类型	团佈粉旦	水分处理类别				
	国际奴里	T1	T2	Т3		
单叶	920	272	344	304		
多叶	1 080	372	324	384		
合计	2 000	644	668	688		

的尺寸压缩至1280 像素 ×720 像素。

2.4 分类网络数据集制作

使用训练后的 Mask R - CNN 模型分割采集到的所有叶片图像,每幅图像压缩成 224 像素 × 224 像素,得到图7 所示的叶片图像。

图 7 分割后的部分叶片图像 Fig. 7 Part of segmented blade image

由于拍摄时随机选取番茄的叶片,采集到的部 分叶片图像中叶片水分胁迫特征不太明显,根据缺 水特征,人工对图像进行一定的筛选,经过水分胁迫 处理的叶片保留特征如表3所示。

表 3 3 种水分胁迫下叶片图像的叶片特征 Tab. 3 Characteristics of leaves under water stress

水分处理类别	叶片特征
无胁迫	叶片自然伸展,颜色为翠绿或深绿。
山南助道	叶片微有萎蔫下垂,叶边缘有卷起,叶面褶皱,叶
甲度胁迫	片发黄程度较轻。
重度胁迫	叶片严重萎蔫下垂,整片叶子蜷缩卷起,叶片发
	黄。

将筛选后的叶片图像作为分类网络的原始数据 集,为扩充数据集的数据量,提升分类模型的泛化能 力,需要对所有图像进行数据增强。具体操作为:对现 有数据集中的所有图像进行亮度调整,分别将亮度设 置为原图的 60%、80%、90%、120%、140%^[21],再将数 据集中的图像进行前后、左右翻转。每幅原图像增强 10次。最终得到训练集 8 936 幅图像,测试集 3 830 幅 图像,比例约为 7:3,其中测试集包含无胁迫 1 230 幅, 中度胁迫 1 380 幅,重度胁迫1 220 幅。

2.5 结果分析

2.5.1 分割试验结果分析

本试验的叶片图像分为无胁迫、中度胁迫和重

度胁迫叶片,分割结果如图8所示。

由图 8 可知,使用 Mask R - CNN 分割网络训练

的模型对获取的测试集的图像进行了实例分割, 3 种类型的叶片分割基本达到了预期效果。

由图9可看出,使用 MSCOCO 的预训练模型的 权重,仅训练分割网络的全连接层,当训练周期数由 0次逐渐增加到60次,训练集损失函数值由1.25 降至0.19,测试集的损失函数值由0.98 降至0.31, 此时,该网络实现了不同水分胁迫情况下番茄叶片 的目标检测和分割。通过数据分析,从图9整体来 看,随训练周期数不断增加,训练集和测试集分类误 差基本呈逐渐降低趋势,损失函数值随着训练周期 数的增加基本收敛到一个稳定值,显示出 Mask R -CNN 网络对叶片的分割基本达到了预期效果。表4 为3种类型叶片的分割精度。

由表 4 可以看出,本方法对于单叶片和多叶片的 MCC 平均为 0.798, ACC 平均可达到 94.37%,可见叶片分割效果良好。

2.5.2 分类试验结果分析

经过 20 个训练周期后, VGG - 19、AlexNet 和 DenseNet169 3 种类型的分类网络训练集和 测试集的准确率变化如图10所示。可以看出,

		0	-
图像类型		MCC	ACC/%
工时为	单叶片	0.821	97.2
兀胁迫	多叶片	0.745	91.3
古座时边	单叶片	0.836	98.1
甲度胁迫	多叶片	0.754	92.0
壬亩时边	单叶片	0.862	96.4
 里度 胁 迫	多叶片	0.772	91.2
平均值		0. 798	94.37

表 4 3 种类型叶片分割精度 Tab.4 Three kinds of blade segmentation precision

Fig. 10 Comparison of accuracy between training set and test set

DenseNet169分类模型对训练集数据预测的准确 率接近100%,说明该分类模型可以充分地拟合训 练数据,同时 DenseNet169迁移模型在测试集的准 确率为94.68%,为3个模型中的最高值,表明此 模型具有很强的泛化能力和鲁棒性。VGG-19次 之,平均准确率为89.09%,但是VGG-19在训练 集上损失函数值下降很快,训练集准确率也很高, 但测试集准确率并不高,原因是VGG-19网络在 训练时发生了过拟合。AlexNet迁移模型准确率 80%,为最低值,在测试集和训练集上的准确率会 随着训练周期的增加有一定的波动,原因是 AlexNet模型层数较少,为浅层神经网络,其泛化能 力较差,不能充分学习到图像特征。由此可知, DenseNet169网络训练的分类模型与VGG-19、 AlexNet这2种分类模型进行对比,准确率分别提 高了 5.59、14.68 个百分点。

VGG-19、AlexNet 和 DenseNet169 这 3 种类型的卷积神经网络在训练集和测试集的损失函数值变化对比如图 11 所示,仅训练分类网络的全连接层,当训练周期数由 0 逐渐增加到 20,DenseNet169 训练集的损失函数值由 0.54 降至 0.06。测试集和训练集损失函数值随着训练周期数的增加,平稳下降,在 15 个周期之后,损失函数值变化不大,趋向于平稳。测试集损失函数值由 0.32 降至 0.07,此时,该网络实现了不同水分胁迫番茄叶片的分类。通过数据分析,由图 11 可知,随训练周期数的不断增加,训练集和测试集的分类误差基本呈逐渐降低趋势,损失函数值随着训练周期数增加基本收敛到一个稳定值,显示出 DenseNet169 网络对叶片的分类基本达到了预期效果。表 5 为 DenseNet169 对测试集分类预测的混淆矩阵。

部分无胁迫的叶片也被预测为中度胁迫,形态 特征为叶片稍微蜷缩的中度胁迫叶片,在明亮环境 下,容易与无胁迫叶片发生混淆,同时明亮环境下会 影响中度胁迫叶片发黄无光泽的颜色特征。

原因是 DenseNet169 迁移模型不能很好地提取 到区分重度胁迫叶片和中度胁迫叶片的形态特征, 在不同光照下不能很好地提取到区分无胁迫叶片和 中度胁迫叶片的颜色特征和光泽特征,而对如叶脉 颜色等局部空间特征,叶片蜷缩严重,背部叶脉完全 露出等明显的形态特征,提取效果较好。

表 5 DenseNet169 对测试集分类预测的混淆矩阵

Tab. 5	Obfuscating	matrix	of	DenseNet169	for	test	set	prediction
	-							-

团佈米刊	分类为	分类为无胁迫		分类为中度胁迫		分类为重度胁迫		正确分类	刀回变/0/	
图像尖型 ·	数量/幅	比例/%	数量/幅	比例/%	数量/幅	比例/%	幅	数/幅	百四平/70	
无胁迫	1 215	31.72	15	0.39	0	0	1 230	1 215	97.98	
中度胁迫	25	0.65	1 340	34.99	15	0.39	1 380	1 340	96.40	
重度胁迫	0	0	35	0.91	1 185	34.54	1 220	1 185	98.75	

3 结论

(1)提出了一种受到不同水分胁迫的叶片分割 方法。对于无胁迫、中度胁迫、重度胁迫 3 种水分胁 迫处理的番茄叶片,微调后的 Mask R - CNN 模型对 于单叶片和多叶片的 MCC 平均为 0.798, ACC 平 均可达到 94.37%。

(2)提出了一种叶片水分胁迫程度分类方法。
试验表明, DenseNet169、VGG - 19、AlexNet 迁移模型在测试集上的分类准确率分别为 94.68%、
89.09%、80%, DenseNet 169 网络训练的分类模型

与 VGG - 19、AlexNet 这 2 种分类模型进行对比, 分类准确率比后者分别提高了 5.59、14.68 个百 分点。

(3)本文算法对番茄叶片中度胁迫与重度胁迫 的分类上仍存在不足,原因是部分中度胁迫叶片 (叶片发黄、叶边蜷缩、叶面无光泽)以及重度胁迫 叶片(叶片蜷缩严重、发黄无光泽)被错误分类。涉 及的特征有颜色特征(发黄、无光泽)、形态特征 (叶片蜷缩)、纹理特征(可见背部叶脉),训练时应 增加样本的数量,提高样本多样性,从而提升诊断模 型的精度。

参考文献

[1] 刘杰,陈思,周振江,等.不同生育阶段土壤含水率对番茄果实维生素 C 含量的影响[J/OL].农业机械学报,2016, 47(8):72-80.

LIU Jie, CHEN Si, ZHOU Zhenjiang, et al. Effect of soil water content at different growth stages on vitamin C content in tomato fruit [J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2016,47(8):72 - 80. http://www.j-csam.org/jcsam/ch/reader/view_abstract.aspx? flag = 1&file_no = 20160811&journal_id = jcsam. DOI: 10.6041/j.issn.1000-1298. 2016.08.011. (in Chinese)

- [2] 劳东青,李发永.计算机视觉在作物水分亏缺诊断中的应用进展[J]. 塔里木大学学报,2014,26(4):90-95.
 LAO Yongqing,LI Fayong. Application status of computer vision in diagnosis of crop water deficiency[J]. Journal of Tarim University, 2014,26(4):90-95. (in Chinese)
- [3] KAZUMAS A, RYOSUK E, GOT A, et al. Multimodal neural network with clustering-based drop for estimating plant water stress
 [J]. Computers and Electronics in Agriculture, 2019, 168:105 118.
- [4] SALVADOR G, MARÍA P D, JUAN F N, et al. Vineyard water status assessment using on-the-go thermal imaging and machine learning[J]. PLoS ONE, 2018, 13(2):e0192037.
- [5] LI Li, CHEN Shiwang, YANG Chengfei, et al. Prediction of plant transpiration from environmental parameters and relative leaf area index using the random forest regression algorithm [J]. Journal of Cleaner Production, 2020, 261:121136.
- [6] 姚志华,陈俊英,张智韬,等. 基于无人机热红外遥感的冬小麦水分胁迫研究[J]. 节水灌溉, 2019(3):12-17. YAO Zhihua, CHEN Junying, ZHANG Zhitao, et al. Winter wheat water stress research based on thermal infrared remote sensing of unmanned aerial vehicle (UAV)[J]. Water Saving Irrigation, 2019(3):12-17. (in Chinese)
- [7] HE K M, GKIOXARI G, DOLLAR P, et al. Mask R CNN [C] // The IEEE International Conference on Computer Vision. IEEE, 2017: 2961 - 2969.
- [8] HUANG G, LIU Z, MAATEN LVD, et al. Densely connected convolutional networks [C] // Proceedings of 2017 IEEE Conference on Computer Vision & Pattern Recognition (CVPR). IEEE Computer Society, 2017:2261-2269.
- [9] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [J/OL]. Ar Xiv Preprint (2015-04-10) [2020-05-20]. https://arxiv.org/abs/1409.1556.
- [10] KRIZHEVSKY A, SUTSKEVER I, HINTON G. Imagenet classification with deep convolutional neural networks [C] // Advances in Neural Information Processing Systems(NIPS), Cambridge: MIT Press, 2012:1097 - 1105.
- [11] 李莉,王宏康,吴勇,等. 基于 K means 聚类算法的草莓灌溉策略研究[J/OL].农业机械学报,2020,51(1):295 302.
 LI Li, WANG Hongkang, WU Yong. et al. Investigation of strawberry irrigation strategy based on K means clustering algorithm [J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2020,51(1):295 302. http://www.j-csam.org/jcsam/ch/reader/view_abstract.aspx? flag = 1&file_no = 20200132&journal_id = jcsam. DOI:10.6041/j.issn.1000-1298. 2020.01.032. (in Chinese)
- [12] 岳霆,杨平,巩法江,等.水分对设施番茄果实发育和产量的影响[J].农业科技通讯,2017(7):212-214.
 YUE Ting, YANG Ping, GONG Fajiang, et al. Effects of water on fruit development and yield of tomato in greenhouse[J].
 Bulletin of Agricultural Science and Technology, 2017(7):212-214. (in Chinese)
- [13] 刘朝霞. 土壤干旱胁迫对番茄根系生长、气孔特性及保护酶活性的影响[D]. 南京:南京信息工程大学,2016.
 LIU Chaoxia. Effects of soil drought stress on root growth, stomatal characteristics and antioxidant enzume of tomato crops[D].
 Nanjing :Nanjing University of Information Science & Technology,2016. (in Chinese)
- [14] REN S, HE K, GIRSHICK R, et al. Faster R CNN: towards real-time object detection with region proposal network [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
- [15] LONG J, S. E, DARREL T, Fully convolutional networks for semantic segmentation [C] // IEEE Conference on Computer Vision & Pattern Recongnition, 2015: 3431 - 3440.
- [16] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C] // IEEE Conference on Computer Vision & Pattern Recongnition. IEEE Computer Society, 2015: 1512 - 1516.

- [18] HAN B, XU Y, DONG F. Design of current source for multi-frequency simultaneous electrical impedance tomography [J]. Review of entific Instruments, 2017, 88(9):094709.
- [19] JAMES A, THOMAS D, MAYO F, et al. A versatile and reproducible multi-frequency electrical impedance tomography system [J]. Sensors, 2017, 17(2):280 - 300.
- [20] SUSANA A S, ANNE R, ANNA B, et al. System description and first application of an FPGA-based simultaneous multifrequency electrical impedance tomography[J]. Sensors, 2016, 16(8):1158-1179.
- [21] 张夏婉. 多频电阻抗成像算法研究[D]. 南京:南京邮电大学,2018.
 ZHANG Xiawan. Study on multi-frequency image reconstruction algorithms for electrical impedance tomography[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2018. (in Chinese)
- [22] POLYDORIDES N, LIONHEART W R B. A Matlab toolkit for three-dimensional electrical impedance tomography: a contribution to the electrical impedance and diffuse optical reconstruction software project [J]. Measurement Science & Technology, 2002, 13(12):1871-1883.
- [23] ANDY A, LIONHEART W R B. Uses and abuses of EIDORS: an extensible software base for EIT [J]. Physiological Measurement, 2006, 27(5): S25.
- [24] ANDY A, LIONHEART W R B. EIDORS: towards a community-based extensible software base for EIT[C] // 6th Conference on Biomedical Applications of Electrical Impedance Tomography, London, UK, 2005.
- [25] 孙晓彤. 乳腺三维电阻抗成像硬件系统的初步设计[D]. 北京:北京协和医学院, 2013.
 SUN Xiaotong. The preliminary design of the three-dimensional electrical impedance imaging hardware system for breast[D].
 Beijing: Chinese Academy of Medical Sciences, 2013. (in Chinese)
- [26] HONG S, LEE J, BAE J, et al. A 10.4 mW electrical impedance tomography SoC for portable real-time lung ventilation monitoring system[J]. IEEE Journal of Solid-State Circuits, 2015, 50(11): 2501-2512.
- [27] 李宏英. 三维电阻抗成像系统设计[D]. 天津:天津科技大学, 2014.
 LI Hongying. Design of three dimensional electrical impedance tomography system[D]. Tianjin: Tianjin University of Science and Technology, 2014. (in Chinese)
- [28] YANG Yunjie. An advanced digital electrical impedance tomography system for biomedical imaging [D]. Edinburgh: The University of Edinburgh, 2017.
- [29] SILVERA-TAWIL D, RYE D, SOLEIMANI M, et al. Electrical impedance tomography for artificial sensitive robotic skin: a review[J]. IEEE Sensors Journal, 2015, 15(4):2001-2016.

(上接第 347 页)

- [17] 乔虹,冯全,赵兵,等.基于 Mask R CNN 的葡萄叶片实例分割[J]. 林业机械与木工设备,2019,47(10):15-22. QIAO Hong, FENG Quan, ZHAO Bing, et al. Instance segmentation of grape leaf based on Mask R - CNN[J]. Forestry Machinery & Woodworking Equipment, 2019,47(10):15-22. (in Chinese)
- [18] 蒋良卫,黄玉柱,邓芙蓉.基于深度学习技术的图片文字提取技术的研究[J].信息系统工程,2020(3):87-88.
 JIANG Liangwei,HUANG Yuzhu, DENG Furong. Research on image and text extraction technology based on deep learning technology[J]. China CIO News, 2020(3):87-88. (in Chinese)
- [19] 熊俊涛,戴森鑫,区炯洪,等.基于深度学习的大豆生长期叶片缺素症状检测方法[J/OL].农业机械学报,2020,51(1): 195-202.

XIONG Juntao, DAI Senxing, OU Jionghong, et al. Leaf deficiency symptoms detection method of soybean based on deep learning[J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2020,51(1):195 - 202. http://www.jcsam.org/jcsam/ch/reader/view_abstract.aspx? flag = 1&file_no = 20200121&journal_id = jcsam. DOI:10.6041/j.issn. 1000-1298.2020.01.021. (in Chinese)

[20] 陈士旺,李莉,杨成飞,等. 基于基质含水率的作物蒸腾量估算与预测模型研究[J/OL]. 农业机械学报,2019,50(增刊):187-194.
CHEN Shiwang,LI Li,YANG Chengfei, et al. Estimation and prediction model of crop transpiration based on matrix moisture content[J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2019,50(Supp.):187-194. http://www.j-csam.org/jcsam/ch/reader/view_abstract.aspx? flag = 1&file_no = 2019s029&journal_id = jcsam. DOI: 10.6041/j. issn.

1000-1298. 2019. S0. 029. (in Chinese)

[21] 穆龙涛,高宗斌,崔永杰,等.基于改进 AlexNet 的广域复杂环境下遮挡猕猴桃目标识别[J/OL]. 农业机械学报,2019, 50(10):24-34.

MU Longtao, GAO Zongbin, CUI Yongjie. et al. Kiwifruit detection of far-view and occluded fruit based on improved AlexNet [J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2019,50(10):24 - 34. http://www.j-csam.org/jcsam/ch/reader/view_abstract.aspx? flag = 1&file_no = 20191003&journal_id = jcsam. DOI:10.6041/j.issn.1000-1298. 2019.10.003. (in Chinese)