doi:10.6041/j.issn.1000-1298.2020.06.031

大兴安岭蒙古栎生物量分配格局与可加性模型研究

阳 帆¹ 孟盛旺² 王 威³ 常广军⁴ 彭道黎¹ 刘秦笑芝⁵
 (1.北京林业大学林学院,北京 100083; 2. 中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室,北京 100101;
 3. 国家林业和草原局调查规划设计院,北京 100714; 4. 内蒙古自治区第二林业监测规划院,乌兰浩特 137400;

5. 中国林业科学研究院华北林业实验中心, 北京 102300)

摘要:为探讨大兴安岭林区蒙古栎地上生物量分配模式,并构建可加性生物量模型,采用破坏性取样法共采集了 78 株蒙古栎的干材、树皮、树枝和树叶的生物量,其中 31 株通过全挖法收集根系生物量,计算地上各组分生物量占 地上生物量的比例,分析其随胸径的变化趋势。以胸径、树高、冠幅为自变量,探讨各组分的最优生物模型;采用似 乎不相关模型构建地上各组分生物量的可加性模型,采用留一交叉法对模型进行验证。结果表明,干材占地上生 物量的 51%;随胸径的增加,干材生物量占比较为稳定,树枝生物量占比呈上升趋势,树皮和树叶则相反,根茎比表 现为先急、后缓的下降趋势,均值为 0.36;所有生物量模型均表现出良好的拟合效果(调整决定系数 *R*²_{Adj}为 0.907 ~ 0.984),采用胸径为自变量的根系生物量模型拟合效果最佳,基于胸径和树高组合变量的干材和树皮生物量模型 可取得较好结果,而以胸径和冠幅为自变量的树枝和树叶生物量模型效果最佳。本研究得出的生物量模型对大兴 安岭蒙古栎生物量的核算具有参考价值。

关键词:蒙古栎;生物量分配;可加性模型;根茎比

中图分类号: S757.2 文献标识码: A 文章编号: 1000-1298(2020)06-0292-09

Biomass Allocation and Additive Allometric Models for *Quercus Mongolica* in Daxing'anling Mountains

YANG Fan¹ MENG Shengwang² WANG Wei³ CHANG Guangjun⁴ PENG Daoli¹ LIU Qinxiaozhi⁵

(1. College of Forestry, Beijing Forestry University, Beijing 100083, China

2. Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and

Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

3. Academy of Forest Inventory and Planning, National Forestry and Grassland Administration, Beijing 100714, China

4. The Second Forestry Monitoring and Planning Institute of Inner Mongolia Autonomous, Ulanhot 137400, China

5. Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China)

Abstract: Aiming to explore the aboveground biomass allocation patterns of Daxing'anling and establish additive allometric biomass models for *Quercus Mongolica* species, a total of 78 trees were destructively sampled and collected for wood, bark, branch and leaf biomass. Of which, 31 trees were selected to excavate and collect root biomass. For each component, the share of biomass allocated to different components was assessed by calculating its ratio. The optimum biomass model for each component was decided by using the diameter, tree height, and crown width as independent variables. Seemingly unrelated regression method was applied to construct an additive system of biomass models for aboveground components. Models were validated by the leave-one-out cross-validation method. The results showed that wood biomass occupied more than half of the aboveground biomass. With the increase of DBH, the wood biomass ratio was relatively stable, branch biomass ratio was increased, while a reverse trend was found for bark and leaf. The root/shoot ratio was decreased rapidly and then slowed down, with an average value of 0. 36. All biomass models showed good fitting results with R_{Adj}^2 in the range of 0. 907 ~ 0. 984. The root biomass model with the diameter as the sole independent variable

基金项目: 国家重点研发计划项目(2016YD0600205)

作者简介: 阳帆(1992—),男,博士生,主要从事森林资源监测与抽样技术研究,E-mail: 1609646304@qq. com

收稿日期: 2020-03-16 修回日期: 2020-04-12

通信作者:彭道黎(1963—),男,教授,主要从事森林资源监测与评价和森林经营管理研究,E-mail: dlpeng@ bjfu. edu. cn

showed the optimum fitting effect. The combination variable of diameter and height provided the lowest estimation errors in the regressions associated with wood and bark while using both diameter and crown width as the independent variable generated the most accurate models for branch and leaf. It was concluded that the allometric equations would provide important tools for biomass accounting of *Quercus Mongolica* distributed in Daxing'anling mountains.

Key words: Quercus Mongolica; biomass allocation; additive models; root/shoot ratio

0 引言

作为陆地生态系统最大的碳库,森林在维持区 域碳平衡和应对全球气候变化中具有不可替代的作 用^[1-4]。森林碳储量通常是基于生物量采用含碳系 数转换而来^[5],因此,作为重要的生物学特征和生 态学指标,森林生物量的准确核算具有重要意义。

生物量最准确的测定方法是在野外将树木伐倒 后直接称量,也称为收获法,但这种方法破坏性大, 且耗时、耗力^[6],而且仅能在一定范围或较小的个 体上使用,不适合大面积或保护区的森林生物量估 算^[7]。异速生长模型结构简单、使用方便,基于易 测变量即可快速实现生物量估算,已经成为十分有 效的森林生物量测定手段^[8-9]。通常情况下,生物 量模型是干物质量与胸径之间的回归模型,也有许 多研究将树高、冠幅、树龄等变量添加到模型中,以 提高生物量的预测能力^[10-12],木材密度也用于混合 树种的生物量模型中^[13]。除模型的自变量多样化 外,模型形式也多种多样,其中,最常用的形式为幂 函数及其对数转换形式^[14-15]。

树木总生物量可分为地上生物量和根系生物 量,地上生物量又由树干、树枝和树叶生物量构成, 由于林木各组分之间存在内在相关性,因此树木各 组分模型的预测值之和应等于总量模型的预测 值^[16]。目前,针对全球主要分布树种构建了许多生 物量模型,但大多采用最小二乘法对总量、分量模型 单独拟合,使模型之间不具有可加性[17],导致预测 结果不符合生物学逻辑。因此,构建生物量模型时, 有必要考虑可加性[18-19]。生物量模型的可加性已 有几十年的研究历史,研究者提出了多种手段来解 决线性或非线性模型的可加性问题^[20-22]。近年来, 使用最广泛的是似乎不相关模型 (Seemingly unrelated regression,SUR),该模型通过联立方程系 统,综合考虑了不同组分之间的关联性,并对方程参 数和误差结构设置约束条件[14],从而保证模型结果 之间的可加性。

大兴安岭是我国寒温带森林的主要分布区,林 区面积广阔、资源丰富、碳储量巨大,不仅在全国碳 平衡和气候调控上发挥着重要的生态作用^[23-24],而 且还是我国重要的木材生产基地,具有很高的生态 价值和经济价值。蒙古栎(Quercus Mongolica),又 称柞树,是国家二级保护珍贵树种,也是大兴安岭地 区的主要建群树种和优势树种[25],具有抗干旱、耐 瘠薄、适应性强的特性,在生态环境建设、生物多样 性保护和森林可持续发展方面具有重要作用[25]。 在未来气候变化下,蒙古栎的地理分布范围可能会 更广^[26].因此,研究其生物量的变化规律对未来气 候下生态系统碳计量和碳循环具有重要意义。目 前,有关蒙古栎生物量模型的研究相对较少,主要针 对黑龙江大兴安岭地区[5,23],而缺少内蒙古大兴安 岭地区的数据支撑。本研究通过收获法采集天然蒙 古栎地上和根系的生物量,旨在探讨其生物量的分 配格局及变化规律,并基于胸径、树高和冠幅变量, 采用似乎不相关模型构建可加性生物量模型,为大 兴安岭林区蒙古栎生物量及碳储量估算提供有效手 段。

1 材料与方法

1.1 研究区概况

大兴安岭是我国最大的原始林区,属于寒温带 大陆性季风气候,全年气温较低,四季温差大,年平 均温度低于 0℃,极端低温和高温分别为 – 52℃和 40℃。年降雨量为 350 ~ 500 mm,且主要集中在 5— 10月,土壤类型以棕色针叶林土为主。林区内主要 树种有兴安落叶松(Larix gmelinii)、樟子松(Pinus sylvestris var. mongolica)、蒙 古 栎 (Quercus mongolica)、白桦(Betula platyphylla)、山杨(Populus davidiana)等。灌木层主要有杜鹃(Rhododendron simsii)、杜香(Ledum palustre)和越橘(Vaccinium vitis-idaea)等。

1.2 样木生物量测定

根据蒙古栎的分布特点和立地条件等,按径阶 选取样木并采用破坏性采样法测定生物量,胸径 10 cm 以下的树木取样径阶设置为1 cm,而10 cm 以 上的树木设置为2 cm,共选择 78 株蒙古栎,全部测 定胸径和冠幅,伐倒后测定树干长度(树高),树高 随胸径的变化趋势及各径阶样木分布情况见图 1。 由于根系生物量取样、测定费时耗力,尤其对细根的 准确计量难度更大,因此,在采集地上生物量数据的 78 株样木中,按径阶分布共选择了 31 株样木用于

单木生物量测定分为地上和地下两部分,地上 生物量又分为干材、树皮、树枝和树叶4部分。将伐 倒木的树干均匀分为10个区分段,测定各区分段处 的带皮直径和去皮直径,然后称得所有区分段的鲜 质量,在全树高的0.1、0.3、0.7处的上下位置,各取 2个3~5 cm厚的圆盘,称其鲜质量后,将树皮剥离 再次称量,用于树皮生物量计算。树冠生物量分层 测定,将树冠分为3层,每层选择生长良好、长度和 叶量适中的3个标准枝,分别称枝、叶的鲜质量,然后 在各层标准枝分别对枝条和叶片取样,并称其鲜质 量。根系生物量采用全挖法测定,并对不同位置根系 取样,称其鲜质量。所有样品带回实验室后,放入 105℃的干燥箱中干燥至质量恒定,测量样品干质量, 计算含水率。鲜质量乘以含水率得到各个组分的生 物量,各组分生物量相加得到树木总生物量(表1)。

表1 建模样木基本统计量

 Tab. 1 Descriptive statistics of sampled trees for biomass equations development

参数	平均值	最小值	最大值	标准差
胸径/em	16.30	1.50	32.80	9.85
树高/m	9.74	1.90	20.50	4.92
冠幅/m	4.71	0.45	9.70	2.23
干材生物量/kg	77.69	0.19	336.27	90.99
树皮生物量/kg	16.72	0.08	74.66	17.90
树枝生物量/kg	48.92	0.05	248.12	60.22
树叶生物量/kg	6.76	0.04	26.82	7.33
地上生物量/kg	150.09	0.42	668.12	170.85
根系生物量/kg	39.00	0.34	184.68	48.55

1.3 数据处理与分析

通过计算干材、树皮、树枝和树叶占地上生物量 的比例,分析地上生物量在树木不同组分的分配模 式及随胸径的变化趋势。基于测定根系生物量的样 木,计算根茎比(即根系生物量与地上总生物量之 比)并分析其随胸径的变化规律。 胸径和树高是野外调查中的易测变量,也是树 木生物量模型构建的重要因子。采用胸径以及胸 径、树高的组合为自变量,并在此基础上加入冠幅因 子,观察模型的拟合效果。

$$\ln W_i = \ln \alpha_i + \beta_i \ln d + \varepsilon_i \tag{1}$$

$$\ln W_i = \ln \alpha_i + \beta_i \ln(d^2 h) + \varepsilon_i$$
(2)

$$\ln W_i = \ln \alpha_i + \beta_i \ln d + \gamma_i \ln c_w + \varepsilon_i$$
(3)

$$\ln W_i = \ln \alpha_i + \beta_i \ln(d^2 h) + \gamma_i \ln c_w + \varepsilon_i \qquad (4)$$

式中 W_i——各组分生物量,kg

$$h - - - - 树高, m c_w - - - - 沅幅, m$$

由于根系生物量较少,不能与地上部分建立模型系统,故根系生物量模型利用模型(1)~(4)单独 拟合。地上各组分生物量模型则分别以式(1)~ (4)为基础,采用似乎不相关模型构建模型系统对 干材、树皮、树枝、树叶、树冠和地上生物总量同时拟 合。似乎不相关模型在参数约束的基础上,综合考 虑了总量和分量模型之间的误差结构关联性,对总量 和分量的生物量模型同时构建,使分量模型没有独立 于总量而构建,确保模型具有可加性^[14,17-18]。模 型(1)~(4)的可加性结构形式类似,因此以自变量最 多的模型(4)为例,构建可加性模型系统,具体形式为

$$\begin{bmatrix}
\ln W_{wd} = \ln \alpha_{wd} + \beta_{wd} \ln (d^{2}h) + \gamma_{wd} \ln c_{w} + \varepsilon_{wd} \\
\ln W_{bk} = \ln \alpha_{bk} + \beta_{bk} \ln (d^{2}h) + \gamma_{bk} \ln c_{w} + \varepsilon_{bk} \\
\ln W_{br} = \ln \alpha_{br} + \beta_{br} \ln (d^{2}h) + \gamma_{br} \ln c_{w} + \varepsilon_{br} \\
\ln W_{lf} = \ln \alpha_{lf} + \beta_{lf} \ln (d^{2}h) + \gamma_{lf} \ln c_{w} + \varepsilon_{lf} \\
\ln W_{cw} = \ln (\alpha_{br} (d^{2}h)^{\beta_{br}} c_{w}^{\gamma_{br}} + \alpha_{lf} (d^{2}h)^{\beta_{lf}} c_{w}^{\gamma_{lf}}) + \varepsilon_{cw} \\
\ln W_{ag} = \ln (\alpha_{wd} (d^{2}h)^{\beta_{wd}} c_{w}^{\gamma_{wd}} + \alpha_{bk} (d^{2}h)^{\beta_{bk}} c_{w}^{\gamma_{bk}} + \alpha_{br} (d^{2}h)^{\beta_{br}} c_{w}^{\gamma_{br}} + \alpha_{lf} (d^{2}h)^{\beta_{lf}} c_{w}^{\gamma_{lf}}) + \varepsilon_{ag}
\end{cases}$$
(5)

式中
$$W_{wd}$$
——干材生物量,kg

 W_{bk} ——树皮生物量,kg W_{br} ——树枝生物量,kg W_{lf} ——树叶生物量,kg W_{cw} ——树冠生物量,kg W_{ag} ——地上生物量,kg α,β,γ ——模型系数 ε ——模型误差

所有模型均在 R 3.6.1 软件中使用"systemfit" 包进行拟合。

1.4 模型评价

模型拟合优度使用均方根误差(RMSE)、平均 绝对误差(MAE)和调整决定系数(R²_{Adi})进行评价。 生物量模型是否可靠、能否用来合理准确地估 算生物量,需要经过检验。本文基于全部数据建模, 采用留一交叉法(刀切法)对模型进行验证,即每次 留一个样本进行检验,其他样本用于模型建立。该 方法广泛用于模型检验,在相关研究中取得了较好 的效果^[27-28]。

2 结果与分析

2.1 地上生物量分配模式及根茎比

蒙古栎各部分生物量占地上生物量的比例差异 较大,其中树干对地上生物量贡献最高,干材和树皮 占地上生物量的比例分别为51%和14%;与树干相 比,树冠部分生物量相对较少,约占地上生物量的 35%,其中树枝为28%,树叶仅为7%(图2,图中的 点表示平均值)。干材占地上生物量的比例较为稳 定,随胸径的变化波动性较弱,树枝生物量比例随胸 径的增加而逐渐增加,表现为正相关关系,而树皮和 树叶生物量比例呈相反趋势(图3,图中黑色线条为 loess 平滑曲线,阴影为95%置信区间,下同)。

图 2 地上生物量在各组分的分配比例 Fig. 2 Partitioning of aboveground biomass in wood,

bark, branch and leaf

Fig. 3 Fraction of aboveground biomass allocated in wood, bark, branch and leaf varied with diameter

根茎比是树木根系生物量与地上生物量的比值。基于开展根系生物量采样的31株样木可知,根茎比的变动范围为0.11~0.81,主要集中于0.2~ 0.5之间,均值和标准差分别为0.36和0.17。树木较小时,根系生物量所占比例较高,根茎较大时,随着胸径的增加,根茎比逐渐减小(图4)。

不同模型形式地上各组分生物量可加性模型及 根系生物量模型的回归系数和拟合优度如表 2 所

示。各组分以 d 为自变量的生物量模型均取得了 良好的拟合效果,模型系数呈极显著,RMSE 和 MAE 分别小于 0.5 kg 和 0.4 kg, R²_{Adi}大于 0.92。 干材和树皮基于 d²h 的生物量模型与采用单一自 变量 d 的模型相比, RMSE 和 MAE 有所减小, 同时 R^2_{Adi} 稍有提升。无论是在 d 变量还是 d^2h 变量的基 础上,加入 c_w变量后,尽管模型的 RMSE 和 MAE 存在一定程度降低,但模型中冠幅变量的系数不 显著,因此,干材和树皮以 d²h 为自变量的模型最 适宜。与之相反,树枝和树叶生物量模型采用 d²h 后,拟合优度略微降低,在 d 变量的基础加入 c_w 后, RMSE 和 MAE 达到最低, 且 R_{Adi}^2 也最高。因 此,以 d 和 c_w为自变量建立树枝和树叶的生物量 模型效果最佳。基于单一自变量 d 的根系生物量 模型拟合效果最佳,采用其他变量后模型效果均 降低。

确定地上各组分最优模型(自变量)后,基于似

乎不相关模型,构建新的可加性生物量模型系统,并 重新进行拟合,得到各组分最优可加性生物量模型 (表3)。树皮、树枝和树叶模型拟合优度与原来相 比略有提升,干材则略有下降。各组分最优生物量 模型的残差随预测值的增加基本呈均匀分布,不存 在异方差问题(图5)。

表 2 各组分模型系数及拟合优度

Tab. 2 Coefficients with standard error and goodness-of-fit statistics of four models for wood, bark, branch, leaf and root

组分	模型	模型	模型系数			拟合优度		
		预测变量	lnα	β	γ	RMSE/kg	MAE/kg	$R^2_{ m Adj}$
干材	1	d	-2.909 ***(0.133)	2. 395 *** (0. 049)		0.377	0.309	0.966
	2	d^2h	-3.367 ***(0.114)	0.912***(0.015)		0.303	0.233	0.978
	3	$d c_w$	-2.882 ***(0.132)	2.269 ***(0.110)	$0.197^{ns}(0.148)$	0.374	0. 299	0.966
	4	d^2h	-3.360 ***(0.121)	0.882***(0.034)	$0.133^{ns}(0.123)$	0.300	0.232	0.978
树皮	1	d	-3.627 ***(0.082)	2. 156 ***(0. 031)		0. 237	0.184	0. 983
	2	d^2h	-4.016 *** (0.084)	0.816***(0.011)		0. 232	0. 189	0. 984
	3	$d c_w$	-3.645 ****(0.090)	2. 134 ***(0. 076)	$0.043^{ns}(0.100)$	0. 237	0. 181	0. 983
	4	d^2h , c_w	-4.003 ***(0.097)	0.789 ***(0.028)	$0.112^{ns}(0.101)$	0.230	0.186	0.984
树枝	1	d	-4.395 ***(0.157)	2.745 ***(0.056)		0. 498	0.367	0. 953
	2	d^2h	-4.849 ***(0.192)	1.031 ***(0.024)		0. 562	0.413	0. 939
	3	$d c_w$	-3.993 ****(0.137)	1.935 ***(0.112)	1. 162 ***(0. 145)	0. 423	0.314	0.966
	4	d^2h c_w	-4.182 ***(0.166)	0.669 ***(0.045)	1.354 ***(0.154)	0.472	0.333	0.957
树叶	1	d	-3.983 ***(0.136)	1. 991 ***(0. 051)		0.450	0.345	0. 928
	2	d^2h	-4.292 ***(0.171)	0.745 ***(0.023)		0.514	0.401	0.907
	3	$d c_w$	-3.803 ***(0.132)	1.605 ***(0.107)	0. 549 ***(0. 134)	0. 428	0.346	0. 935
	4	d^2h , c_w	-3.890 ***(0.165)	0. 535 ***(0. 044)	0.760 ***(0.143)	0.478	0.386	0.920
根系	1	d	-2.399 ****(0.176)	2.034 ****(0.068)		0. 323	0.269	0. 968
	2	d^2h	-2.762 ****(0.187)	0.771 ***(0.026)		0. 323	0.270	0.968
	3	$d c_w$	-2.396 ****(0.181)	2.022 ***(0.184)	$0.020^{ns}(0.281)$	0.329	0.269	0.967
	4	d^2h	-2.799 ****(0.201)	0. 809 *** (0. 073)	$-0.164^{ns}(0.295)$	0.327	0.265	0.967

注:地上部分生物量采用可加性模型拟合,根系模型单独拟合,模型系数括号中数据表示标准误差,***表示显著性水平(p<0.001),ns表示不显著。

表 3	地上最优可加性生物量模型及根系最优模型
12.5	龙土取几寸加上土的重快主众低小取几法

Tab.3 Optimum additive biomass models for aboveground parts and selected models for root

组分	生物量模型	RMSE/kg	MAE/kg	$R^2_{ m Adj}$
干材	$\ln W_{\rm wd} = -3.409 + 0.916 \ln (d^2 h)$	0.302	0.235	0.978
树皮	$\ln W_{\rm bk} = -4.050 + 0.818 \ln (d^2 h)$	0.230	0.186	0.984
树枝	$\ln W_{\rm br} = -3.995 + 1.954 \ln d + 1.123 \ln c_w$	0.421	0.312	0.966
树叶	$\ln W_{\rm lf} = -3.775 + 1.601 \ln d + 0.528 \ln c_w$	0.427	0.346	0.936
树冠	$\ln W_{\rm cw} = \ln (\ {\rm e}^{-3.995} d^{1.954} c_w^{1.123} + {\rm e}^{-3.775} d^{1.601} c_w^{0.528})$	0.368	0.280	0.970
地上部分	$\ln W_{\rm ag} = \ln \left({\rm e}^{ -3. 409} \left(d^2 h \right)^{ 0. 916} + {\rm e}^{ -4. 050} \left(d^2 h \right)^{ 0. 818} + {\rm e}^{ -3. 995} d^{1. 954} c_w^{ 1. 923} + {\rm e}^{ -3. 775} d^{1. 601} c_w^{ 0. 528} \right)$	0.232	1.114	0. 987
根系	$\ln W_{\rm rt} = -2.399 + 2.034 \ln d$	0.323	0.269	0.968

2.3 留一交叉法模型验证

采用留一交叉法对根系生物量模型和地上部 分最优可加性生物量模型的验证结果如图 6(图中 灰色虚线为 1:1线,黑色线条为线性回归结果)所 示。

图中预测值为模型估计值反对数转换的结果。 线性回归表明,各组分模型的预测值与实际值都具 有良好的一致性,干材、树皮和地上生物量模型的预 测效果相对较好(斜率更接近于1:1线),而树枝、树 叶、根系生物量模型的预测误差相对较大。生物量 较小时,各组分模型的预测结果均表现为高估,当生物量较高时,模型的预测值常小于实际值。

3 讨论

生物量模型在森林资源清查和碳储量估计中具 有不可替代的作用,尤其是作为一种高效率、低成本 的无损估计方法,使森林碳汇计量变得更加快捷、简 单^[29]。本研究基于似乎不相关模型构建了大兴安 岭地区蒙古栎的可加性生物量模型,为该地区森林 生物量和碳库的准确核算提供了有效手段。

3.1 生物量分配格局及根茎比

生物量的增加是树木对能量的积累过程,其在 各组分的分配模式受植物个体和外部环境的共同影 响^[30],树龄不同,各组分生物量占总生物量的比例 也不相同。而胸径基本可以反映树龄的高低^[31],本 研究中生物量分配模式随胸径的变化规律基本反映 了树龄对生物量分配的影响。随着树木的逐渐成 长,木质生物量的积累常常以消耗树叶的生物量为 代价^[32-33],因此,树干和树枝生物量占地上总生物 量的比例最高,树叶所占比例较小。树叶生物量比 例随胸径的增加而降低,原因可能是树叶更多的着 生在幼年生枝条而不是老年生枝条上,意味着单位 干质量枝条上的叶生物量随着树木的成长而减 少^[12]。此外,由于林分中林木对光的竞争,与生长 在开阔地带的树木相比,地上生物量会更多地分配 到树干部分用于树高生长^[34]。 全球树木根茎比的平均值为 0. 26, 变化趋势在 0. 2~0. 3之间, 且根茎比的变化趋势与土壤质地和 树种无关^[35]。我国针叶树和阔叶树根茎比的平均 值分别为 0. 25 和 0. 29, 阔叶树略高于针叶树^[36]。 本研究得到蒙古栎根茎比为 0. 36, 相比全球和我国 平均水平都较高。

3.2 异速生长模型

胸径作为森林资源清查中最重要的一个参数, 是建立各种生长模型、材积方程必不可少的变 量^[32],本文研究结果也说明了这一点,各组分以胸 径为预测变量的生物量模型可取得良好的拟合效 果。树高作为立地质量的代表性指标^[37],有研究指 出在自变量中加入树高后能显著提高模型的拟合优 度和预测能力^[38-40],为了解决线性回归中的共线性 问题,常将胸径和树高的组合作为预测变量^[7]。本 研究中,使用组合变量后,干材和树皮生物量的模型 拟合优度有少许提高(RMSE 下降, R_{At}^2 增加),而树 枝、树叶和根系生物量模型的拟合优度下降,这与其 他研究结果相同^[40]。还有研究建议引入木材密度、 立地及冠幅等指标用于提高模型的预测精度[41-42]. 本研究在引入冠幅变量后,仅树枝和树叶生物量模 型的拟合优度得到轻微提高,可能是由于阔叶树枝 条分支结构复杂,冠幅空间较大,直接影响着树冠生 物量^[43]。因此,树木不同组分的生物量可基于不同 的自变量取得最佳预测效果。由于基于胸径的生物 量模型已经表现出良好的拟合效果,当森林资源统 计数据中缺失树高或冠幅自变量时,采用胸径作为 单一变量,也可获得较好的估计结果。

可加性是树木生物量估测模型中的一个重要特征,它可以消除分量预测值之和与总量预测值之间的不一致性^[16]。但由于目前大多的生物量模型都采用最小二乘回归估计,使模型之间不具有可加性^[43-45]。似乎不相关模型构建的总量和分量模型系统,考虑到各模型误差的协同相关性,修正了每个模型估计之间的固有误差问题,在这种情况下,总量方程式是所有分量方程式的累加,即总量方程式的自变量为所有分量方程式的自变量,从而对回归系数的估计设定了限制条件^[15,46],有效降低了回归系数的方差。模型系统求解的过程中,同时获得了所

有回归系数,达到减少总量和分量之间不确定性的 目的,保证各组分生物量模型估计值之和等于总量 模型估计值,提高生物量的预测精度。

基于生物量对数值建立的线性模型,在实际应 用时需要将预测值进行反对数转换,但在转换的过 程中会产生系统偏差^[43,47]。为了尽可能地减小偏 差,通常使用基于估计值标准误差计算的校正系数 (CF)对模型预测值进行校正。然而,也有研究认为 使用校正系数后会使生物量的预测值偏高,而且在 反对数转换过程中产生的偏差与生物量估计过程中 产生的总体误差相比通常较小,实际使用中可忽略 不计^[48]。本研究中,各组分生物量模型的校正系数 均相对较小(CF小于1.1),尤其对于干材、树皮和 地上部分(CF小于1.05),因此,模型估计值在反对 数转换时产生的误差较小,在实际使用中可忽略不 计。此外,若使用转换系数,会导致各组分之间生物 量模型的可加性遭到破坏。

由于生物量与易测变量之间的关系随树木大 小、年龄和林型等的变化而不同,本研究得到的模型 更加适用于大兴安岭林区蒙古栎生物量的估计,对 此区域之外或者其他树种估计时,会产生较大的误 差^[9]。本研究生物量模型建模数据的胸径范围为 1.5~32.8 cm,超出该胸径范围的生物量估计都存 在很大的不确定性,因此,应依据特定区域、特定树 种和特定估测范围选择模型进行生物量估计。

4 结束语

蒙古栎地上生物量主要分配在树干,尤其是干 材部分,分配到叶片的生物量最少。根系以胸径为 自变量的根系生物量模型拟合效果最佳,基于胸径 和树高组合变量的干材和树皮生物量模型预测能力 最强,而在胸径基础上添加冠幅变量的树枝和树叶 生物量模型拟合效果更优。采用似乎不相关模型不 仅有助于实现生物量模型的可加性,还可以降低误 差,并提高模型的预测能力。由于对数转换校正系 数通常较小,在实际使用中可以忽略。本研究得到 的最优可加性生物量模型可有效估计大兴安岭林区 蒙古栎生物量,但需要特别注意模型的胸径适用范 围。

参考文献

- DIXON R K, SOLOMON A M, BROWN S, et al. Carbon pools and flux of global forest ecosystems [J]. Science, 1994, 263(5144): 185-190.
- [2] 方精云,刘国华,徐嵩龄. 我国森林植被的生物量和净生产量[J]. 生态学报, 1996,16(5): 497-508.
 FANG Jingyun, LIU Guohua, XU Songling. Biomass and net yield of forest vegetation in China [J]. Acta Ecologica Sinica, 1996,16(5): 497-508. (in Chinese)
- [3] 曾伟生,夏忠胜,朱松,等.贵州省人工马尾松立木材积和地上生物量方程研建[J].林业科学,2011,47(3):96-101.

ZENG Weisheng, XIA Zhongsheng, ZHU Song, et al. Research and construction of standing timber volume and abovemention biomass equation of artificial masson pine in Guizhou Province [J]. Forestry Science, 2011, 47(3): 96 – 101. (in Chinese) 阳帆,王海宾,胡晟,等. 基于群团抽样技术的森林资源监测方案研究[J/OL]. 农业机械学报, 2019, 50(2): 212 – 217,249.

- [4] 阳帆,王海宾,胡晟,等. 基于群团抽样技术的森林资源监测方案研究[J/OL]. 农业机械学报, 2019, 50(2): 212-217,249.
 YANG Fan, WANG Haibin, HU Sheng, et al. Forest resource monitoring based on cluster sampling techniques [J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(2): 212-217,249. http://www.jcsam.org/jcsam/ch/reader/view_abstract.aspx? flag = 1&file_no = 20190224&journal_id = jcsam. DOI 10.6041/j.issn.1000-1298.2019.02.024. (in Chinese)
- [5] DONG L, ZHANG L, LI F. Developing additive systems of biomass equations for nine hardwood species in Northeast China [J]. Trees, 2015, 29(4): 1149-1163.
- [6] KETTERINGS Q M, COE R, VAN NOORDWWJK M, et al. Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests[J]. Forest Ecology and Management, 2001, 146(1): 199 – 209.
- [7] MENSAH S, VELDTMAN R, DU T B, et al. Aboveground biomass and carbon in a South African mistbelt forest and the relationships with tree species diversity and forest structures [J]. Forests, 2016, 7(4): 79.
- [8] DICKINSON Y L, ZENNER E K. Allometric equations for the aboveground biomass of selected common eastern hardwood understory species [J]. Northern Journal of Applied Forestry, 2010, 27(4): 160-165.
- [9] RIOFRIO J, HERRERO C, GRIJALVA J, et al. Aboveground tree additive biomass models in ecuadorian highland agroforestry systems [J]. Biomass and Bioenergy, 2015, 80(6): 252 - 259.
- [10] CHAVE J, RÉJOU-MÉCHAIN M, BÚRQUEZ A, et al. Improved allometric models to estimate the aboveground biomass of tropical trees[J]. Global Change Biology, 2014, 20(10): 3177 - 3190.
- [11] KUYAH S, SILESHI G, ROSENSTOCK T. Allometric models based on bayesian frameworks give better estimates of aboveground biomass in the miombo woodlands[J]. Forests, 2016, 7(2): 13.
- [12] DIMOBE K, MENSAH S, GOETZE D, et al. Aboveground biomass partitioning and additive models for combretum glutinosum and terminalia laxiflora in West Africa [J]. Biomass and Bioenergy, 2018, 115(3): 151 – 159.
- [13] ANNIGHÖFER P, MÖLDER I, ZERBE S, et al. Biomass functions for the two alien tree species Prunus serotina Ehrh. and Robinia pseudoacacia L. in floodplain forests of Northern Italy[J]. European Journal of Forest Research, 2012, 131(5): 1619 – 1635.
- [14] BI H, TURNER J, LAMBERT M. Additive biomass equations for native eucalypt forest trees of temperate Australia [J]. Trees, 2004, 18(4):112-117.
- [15] HUFF S, RITCHIE M, TEMESGEN H. Allometric equations for estimating aboveground biomass for common shrubs in Northeastern California[J]. Forest Ecology and Management, 2017, 398(5): 48-63.
- [16] KOZAK A. Methods for ensuring additivity of biomass components by regression analysis [J]. The Forestry Chronicle, 1970, 46(5): 402-404.
- [17] DONG L, ZHANG L, LI F. Developing two additive biomass equations for three coniferous plantation species in Northeast China[J]. Forests, 2016, 7(12): 136.
- [18] PARRESOLI B R. Additivity of nonlinear biomass equations [J]. Canadian Journal of Forest Research, 2001, 31(5): 865-878.

[19] CARVALHO J P, PARRESOL B R. Additivity in tree biomass components of Pyrenean oak (Quercus pyrenaica Willd.) [J].
 Forest Ecology and Management, 2003, 179(1): 269 – 276.

- [20] PAEERSOL B R. Assessing tree and stand biomass: a review with examples and critical comparisons [J]. Forest Science, 1999, 45(4): 573 - 593.
- [21] 唐守正,张会儒,胥辉. 相容性生物量模型的建立及其估计方法研究[J]. 林业科学, 2000,36(增刊1): 19-27. TANG Shouzheng, ZHANG Huiru, XU Hui. Establishment and estimation of compatible biomass model [J]. Forestry Science, 2000,36(Supp.1): 19-27. (in Chinese)
- [22] POUDEL K P, TEMESGEN H. Methods for estimating aboveground biomass and its components for *Douglas-fir* and lodgepole pine trees [J]. Canadian Journal of Forest Research, 2015, 46(1): 77 87.
- [23] WANG C. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests [J]. Forest Ecology and Management, 2006, 222(1-3): 9-16.
- [24] CHANG S X, GENG P, WANG C, et al. Carbon storage, net primary production, and net ecosystem production in four major temperate forest types in Northeastern China [J]. Canadian Journal of Forest Research, 2016, 46(2): 143 – 151.
- [25] 李春明,赵丽芳,李利学. 基于混合效应模型和零膨胀模型方法的蒙古栎林分水平枯损模型[J]. 林业科学, 2019, 55(11):27-36.

LI Chunming, ZHAO Lifang, LI Lixue. A model of fractional horizontal depletion in Mongolian oak forest based on hybrid effect model and zero expansion model [J]. Forestry Science, 2019, 55(11): 27 - 36. (in Chinese)

- [26] 殷晓洁,周广胜,隋兴华,等.蒙古栎地理分布的主导气候因子及其阈值[J]. 生态学报, 2013, 33(1): 103-109.
 YIN Xiaojie, ZHOU Guangsheng, SUI Xinghua, et al. Dominant climatic factors and their thresholds in the geographical distribution of *Quercus Mongolica*[J]. Acta Ecologica Sinica, 2013, 33(1): 103-109. (in Chinese)
- [27] LI H, ZHAO P. Improving the accuracy of tree-level aboveground biomass equations with height classification at a large

regional scale [J]. Forest Ecology and Management, 2013, 289(8): 153-163.

- [28] ZHENG C, MASON E G, JIA L, et al. A single-tree additive biomass model of *Quercus variabilis* Blume forests in North China [J]. Trees, 2015, 29(3): 705 – 716.
- [29] RISIO L, HERREO C, BOGINO S M, et al. Aboveground and belowground biomass allocation in native Prosopis caldenia Burkart secondaries woodlands in the semi-arid Argentinean pampas[J]. Biomass and Bioenergy, 2014, 66(3): 249 - 260.
- [30] PEEORTER H, NAGEL O. The role of biomass allocation in the growth response of plants to different levels of light, CO₂, nutrients and water: a quantitative review [J]. Functional Plant Biology, 2000, 27(6): 595-607.
- [31] SHAHROKHAZDEH U, SOHRABI H, COPENHEAVER C A. Above ground biomass and leaf area index equations for three common tree species of Hyrcanian temperate forests in Northern Iran[J]. Botany, 2015, 93(10): 663 670.
- [32] PAJTÍK J, KONÔPKA B, LUKAC M. Individual biomass factors for beech, oak and pine in Slovakia: a comparative study in young naturally regenerated stands[J]. Trees, 2011, 25(2): 277 - 288.
- [33] MENSAH S, GLÈLÈ KAKAÏ R, SEIFERT T. Patterns of biomass allocation between foliage and woody structure: the effects of tree size and specific functional traits[J]. Annals of Forest Research, 2014, 59(1):115 - 118.
- [34] NÁVAR J. Allometric equations for tree species and carbon stocks for forests of Northwestern Mexico[J]. Forest Ecology and Management, 2009, 257(2): 427-434.
- [35] CAIRNS M A, BROWN S, HELMER E H, et al. Root biomass allocation in the world's upland forests [J]. Oecologia, 1997, 111(1): 1-11.
- [36] 曾伟生. 基于木材密度的 34 个树种组一元立木生物量模型建立[J]. 林业资源管理, 2017(6): 41-46. ZENG Weisheng. Establishment of monoculture biomass model of 34 species groups based on wood density [J]. Forestry Resource Management, 2017(6): 41-46. (in Chinese)
- [37] NOGUEIRA J L R, ENGEL V L, PARROTTA J A, et al. Allometric equations for estimating tree biomass in restored mixedspecies atlantic forest stands[J]. Biota Neotropica, 2014, 14(2): 11-12.
- [38] ANTONIO N, TOME M, TOME J, et al. Effect of tree, stand, and site variables on the allometry of *Eucalyptus globulus* tree biomass[J]. Canadian Journal of Forest Research/Revue Canadienne De Recherche Forestiere, 2007, 37(5): 895 906.
- [39] LIMA A J N, SUWA R, RIBEIRO G H P M, et al. Allometric models for estimating above- and below-ground biomass in Amazonian forests at Sao Gabriel da Cachoeira in the upper Rio Negro, Brazil[J]. Forest Ecology and Managemen, 2012, 277(1): 163 – 172.
- [40] XIANG W, ZHOU J, OUYANG S, et al. Species-specific and general allometric equations for estimating tree biomass components of subtropical forests in Southern China[J]. European Journal of Forest Research, 2016, 135(5): 963 979.
- [41] FAAYOLLE A, DOUCET J, GILLET J, et al. Tree allometry in Central Africa: testing the validity of pantropical multi-species allometric equations for estimating biomass and carbon stocks[J]. Forest Ecology and Management, 2013, 305(3): 29-37.
- [42] 曹磊,李海奎. 广东省樟树相容性生物量模型的构建[J]. 森林与环境学报, 2018, 38(4): 458-465.
 CAO Lei, LI Haikui. Establishment of compatible biomass model of camphor tree in Guangdong Province [J]. Journal of Forestry and Environment, 2018, 38(4): 458-465. (in Chinese)
- [43] ZIANIS D, ZIANIS D, XANTHOPOULOS G, et al. Allometric equations for aboveground biomass estimation by size class for Pinus brutia Ten. trees growing in North and South Aegean Islands, Greece[J]. European Journal of Forest Research, 2011, 130(2): 145-160.
- [44] TER-MIKAELIAN M T, KORZUKHIN M D. Biomass equations for sixty-five North American tree species [J]. Forest Ecology and Management, 1997, 97(1): 1-24.
- [45] YOUKHANA A H, IDOL T W. Allometric models for predicting above- and belowground biomass of Leucaena-KX2 in a shaded coffee agroecosystem in Hawaii[J]. Agroforestry Systems, 2011, 83(3): 331-345.
- [46] CANGA E, DIÉGUEZ-ARANDA U, ELIAS A K, et al. Above-ground biomass equations for *Pinusradiata* D. Don in Asturias [J]. Forest Systems, 2013, 22(3): 408 – 415.
- [47] BWAUCHAMP J J, OLSON J S. Corrections for bias in regression estimates after logarithmic transformation [J]. Ecology, 1973, 54(6): 1403 - 1407.
- [48] MADGWICK H A I, SATOO T. On estimating the aboveground weights of tree stands [J]. Ecology, 1975, 56(6): 1446 1450.