doi:10.6041/j.issn.1000-1298.2020.04.031

灌水量和地下水调控对干旱地区土壤水盐分布的影响

史海滨 郭珈玮 周 慧 王国帅 付小军 李正中2

(1. 内蒙古农业大学水利与土木建筑工程学院, 呼和浩特 010018;

2. 内蒙古河套灌区解放闸灌域管理局沙壕渠试验站,巴彦淖尔 015400)

摘要:为探明河套灌区典型耕地最佳灌水制度和合理地下水埋深,于 2017、2018 年连续 2 年进行了田间试验,选取向日葵农田作为研究对象,应用饱和--非饱和土壤水分及溶质运移理论,利用 HYDRUS - 2D 数值模型对研究区不同 灌水量及地下水埋深条件下 GSPAC 系统中水盐运移规律进行数值模拟,分析了不同灌水量条件下的水盐运移状态。将模拟结果与田间试验实测结果进行对比分析,模型模拟值与实测值较吻合。结果表明,试验区最佳灌水量为 82.8~85.5 mm,地下水合理调控埋深为 160.72 cm。研究结果可为干旱区水资源合理利用和水盐调控提供理论依据。 关键词:向日葵;灌溉;地下水埋深;数值模拟;水盐调控

中图分类号: S274 文献标识码: A 文章编号: 1000-1298(2020)04-0268-11 OSID: 翻

Effects of Irrigation Amounts and Groundwater Regulation on Soil Water and Salt Distribution in Arid Region

 SHI Haibin¹ GUO Jiawei¹ ZHOU Hui¹ WANG Guoshuai¹ FU Xiaojun² LI Zhengzhong²
 (1. College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China
 2. Shahaoqu Irrigation Experimental Station, Jiefangzha Management Bureau of Hetao Irrigation District, Bayannur 015400, China)

Abstract: In arid oases irrigation areas, soil secondary salination is one of the main problems leading to land desertification, so as to imperil the soil quality, growing of crops and agricultural production, even leading to abandonment of agricultural soils. Most salinization processes of salt accumulation in irrigated lands are largely determined by the salinity of the irrigation water and the groundwater level in the areas. So it is very crucial to control groundwater and irrigation amount for agricultural development. In order to find out the optimal irrigation amount and reasonable groundwater depth in typical cultivated land in Hetao Irrigation District, field trials were conducted for two consecutive years in 2017 and 2018, and sunflower farmland was selected as the research object, saturated-unsaturated soil moisture and solute motion theory was applied, and HYDRUS - 2D numerical model was utilized for numerical simulation of water and salt transport in GSPAC system under different irrigation and groundwater depth conditions in the study area, and analysis of water and salt transport conditions under different irrigation conditions was made to determine the optimal irrigation system and reasonable groundwater depth. The simulation results were compared with the field test results, and the model simulation values were in good agreement with the measured values. The results showed that the optimal irrigation amount in the test area was 82.8 \sim 85.5 mm, and the reasonable grounding depth of groundwater was 160.72 cm. The research can provide a theory basis for rational utilization of water resources and water-salt regulation in arid regions. Key words: sunflower; irrigation; groundwater depth; numerical simulation; water and salt regulation

0 引言

土壤盐分是制约干旱和半干旱地区作物生长及

产量的重要因子之一^[1-3],全球大约有 33% 的农业 用地被盐化^[4]。不合理的灌排制度是导致土壤发 生次生盐渍化的主要原因^[5]。目前,灌溉农田占中

收稿日期: 2019-08-15 修回日期: 2019-09-26

基金项目:国家自然科学基金重点项目(51539005)、国家自然科学基金项目(51769024)和内蒙古自治区科技计划项目(201602049) 作者简介:史海滨(1961—),男,教授,博士生导师,主要从事节水灌溉理论与技术研究,E-mail:shi_haibin@sohu.com

国耕地面积的 39.6%^[6],内蒙古河套灌区位于我国 典型的干旱地区,是亚洲最大的一首制平原引水灌 区,总干渠长 180.85 km^[7-8]。近年来,节水改造的 实施致使灌区传统的排水控盐技术受到限制,淋洗 水量不足使盐分在土壤表层积累^[9]。同时,灌区浅 地下水埋深也增加了因潜水蒸发带来盐分的几率, 进一步加大土壤盐碱化的风险^[10]。灌区内部灌溉 水、土壤水和地下水三者之间联系紧密,采用灵活的 水分配置政策^[11]、将地下水位调控至合理埋深对于实 现水资源有效利用、减轻土壤盐渍化将起到重要作用。

近年来,国内外学者关于不同作物灌溉制度的 研究方法大致分为两类。第1类是通过研究作物需 水量和水量平衡来估算各种作物的灌溉需求;第2 类研究侧重于通过模型模拟来制定科学的灌溉制度 和优化农业管理^[12-16]。但上述研究均未考虑地下 水对作物灌溉制度的影响。灌区作物的灌溉间歇期 长,间歇期作物需水主要靠地下水补给。地下水位 过低,不能满足作物需水量,甚至会导致作物减产; 地下水位过高,又会增大表层土壤积盐的概率。因 此,对灌区地下水位的合理调控极为重要。研究表 明,地下水位不同,土壤水与地下水的相互作用程度 不相同,导致作物所需灌溉水量也不同^[17-18]。理清 GSPAC 系统中的水盐运移规律,制定合理的灌溉制 度及地下水埋深,发挥两者对土壤水的调节作用,对 控制灌区土壤次生盐渍化的产生以及对作物正常生 长发育具有重要意义。

本研究以灌区主要作物向日葵农田作为研究对 象,基于田间试验数据,构建田间尺度饱和--非饱和 土壤水盐运移数值模型,利用 HYDRUS-2D 模型模 拟不同灌水量条件下的土壤水盐运移规律,通过调 节灌水量确定最优的灌溉方案,并结合对地下水埋 深的调控寻求一种适合当地农业生产的节水灌溉、 防治土壤盐渍化的农田水盐调控方案,为当地农业 灌溉水合理利用和水盐调控提供理论依据。

1 材料与方法

1.1 试验区概况

试验区位于河套灌区杭锦后旗南小召永胜五队 (40°48'N,107°5'E,海拔1038 m),多年平均气温 6.9℃,年日照时数3189 h,相对湿度51%,年均风 速为2.8~2.9 m/s。年总辐射量为6151.2~ 6383.1 MJ/m²,大于10℃年积温为3180℃,全年日 照充足,昼夜温差大,降水量集中,蒸发强烈,研究区 参考作物腾发量(ET₀)和降雨量如图1所示。试验 期为每年6月初—9月末,向日葵播种时间分别为 2017年6月1日和2018年6月3日,收获时间分别 为2017年9月25日和2018年9月26日。研究区 土壤物理性质如表1所示,土壤质地以粉壤土为主, 田间持水率为37%,凋萎系数为0.12。试验区土壤 盐碱化严重,土壤表层电导率为1.5dS/m,土壤容 重1.56g/cm³。以2018年典型区地下水位监测数 据为例,地下水埋深变化范围在47.89~165 cm,平 均地下水电导率为4.18dS/m。研究区主要依靠灌 水进行洗盐来维持作物生长,每年进行3次灌水,其 中生育期只进行1次,其余2次为春播前灌水与秋 浇,2017、2018年生育期分别在7月6日、7月7日 灌水95、92 mm。

图 1 2017 年与 2018 年全生育期 ET₀和降雨量

Fig. 1 ET_0 and rainfall during whole growth periods in 2017 and 2018

表1 土壤物理性质

```
Tab. 1 Soil physical properties
```

上日沤庄/	∽臿/	土壤	上棟		
上広休皮/	(-3)	0.05 ~	0.002 \sim	0 ~	上氓
cm	(g•m *)	2 mm	0.05 mm	0.002 mm	天型
0 ~ 20	1.53	16.90 ± 5	73.97 ± 5	9.13 ± 5	粉壤土
$20\sim\!40$	1.58	14.09 ± 5	83.49 ± 10	2.42 ± 0.5	粉土
$40\sim\!60$	1.65	21.49 ± 10	76.02 ± 10	2.49 ± 0.5	粉壤土
$60 \sim 80$	1.52	27. 13 ± 15	70.49 ± 10	2.38 ± 0.5	粉壤土
80 ~ 100	1.51	26.92 ± 10	70.65 ± 10	2.43 ± 0.5	粉壤土

1.2 试验方法与数据来源

研究区位于东涨渠内部,地势整体为西北高东 南低,北部为道路,西部为机缘支渠,东部为永胜到 先锋干渠,南部为几夜渠,四周以道路和支渠为边 界,可以看作相对独立的灌溉系统。试验区选定在 2.8 hm²向日葵农田内开展,东西长 140 m,南北长 200 m,灌溉方式为畦灌。如图 2 所示,研究区内布 设地下水位监测孔,孔深 4 m。2017 年每隔 10 d 采 用土钻取土法取样,取样深度为 120 cm,灌水前 3 d 和灌水后连续 10 d 取样,观测时间为一水、二水、秋 浇,本文只对生育期灌水进行研究。土壤含水率采 用干燥法测定,含盐量采用 5:1水土质量比浸提电 导法测定。2018 年在 25、45、65、85 cm 土壤深处加 设 ECH20 型土壤水分温度及电阻率检测系统及 CTD-10型地下水自动记录仪,每隔1d自动监测 土壤含水率、电导率,地下水位与地下水电导率。且 每隔10d采用土钻取土法取样,对仪器进行验证。 在试验地放置微型蒸发器测量土壤蒸发量。用盒尺 测量向日葵各生育期内的株高、叶面积,每隔10d 监测1次。

土壤指标观测包括:土壤含水率、电导率;地下 水指标:地下水位、电导率;灌水指标:灌水量、时间、 灌溉水电导率;作物指标:向日葵各生育期内的株 高、叶面积。

(b)南小召监测区图 2 试验区土壤水盐监测点布置图

Fig. 2 Layouts of experimental site for soil water and salt monitoring

1.3 数值计算与分析方法

(a) 河套灌区

1.3.1 样品处理与分析

10 km

将采集的土样带回实验室自然风干后碾碎过 1 mm 筛备用。所有土样均制备 5:1水土浸提液,测 定其电导率(EC_{1:5})。

高程/m ■1125 897

选取全部96个土壤样品,通过相关分析得到自 动监测仪所测电导率,换算成土壤 EC_{1:5}的换算关系 为

$$S_1 = 0.9595S_2 + 0.1505$$

(r = 0.975, p < 0.05) (1)

式中 S_1 ——自动监测仪电导率, dS/m

S2-----土壤样品 EC1:5,dS/m

土壤全盐量计算公式为[19]

$$C = 6.9E_{C_{1:5}} - 0.2 \tag{2}$$

式中 C----土壤全盐量,g/kg

使用由实验室测试开发的经验公式,将地下水 电导率转换为地下水含盐量^[20]。公式为

$$T_{\rm DS} = 0.69E_{\rm C} \tag{3}$$

式中 T_{DS} ——地下水含盐量,g/L E_{C} ——地下水电导率,dS/m

1.3.2 土壤洗盐率

洗盐率指0~120 cm 平均土壤剖面在灌溉后某 一时期与灌溉前相比土壤含盐量的减少率,其计算 公式为

$$S_{t} = \frac{e_{0} - e_{t}}{e_{0}} \times 100\% \tag{4}$$

式中 S₁——土壤洗盐率,%

e₁——灌溉后某一时期土壤含盐量,g/kg

e₀——灌溉前土壤含盐量,g/kg

1.3.3 边际土壤洗盐率

边际土壤洗盐率指每增加一个单位的灌水量所 增加的土壤洗盐率。表示其他条件固定不变时,由 灌水量所带来的最大土壤洗盐率的变化,其计算公 式为

$$S(Z_t) = \frac{S_{t_1} - S_{t_2}}{Q_1 - Q_2}$$
(5)

式中 *S*(*Z_i*) ——边际土壤洗盐率,% *Q*₁、*Q*₂ ——不同时刻的灌水量,m³/hm² *S*_{*i*1}、*S*_{*i*2} ——某一时刻灌水量为*Q*₁、*Q*₂的土壤 洗盐率,%

2 模型建立

2.1 基本方程

土壤水分运移数学方程为

$$\frac{\partial \theta}{\partial t} = \frac{\partial}{\partial z} \left(K(\theta) \frac{\partial h}{\partial z} \right) - \frac{\partial K(\theta)}{\partial z} - S(z,t)$$
(6)

式中 θ——土壤体积含水率, cm³/cm³ z——垂向坐标, cm, 零点取在地面, 地面以上

为负 *t*——时间.d h-----土壤水势,cm $K(\theta)$ ——非饱和土壤导水率.cm/d

S(z,t)——单位时间单位体积土壤中根系吸 水率.d⁻¹

土壤水力函数为[21]

$$K(\theta) = K_s \theta_e^l \left[1 - (1 - \theta_e^{\frac{1}{m}})^m \right]^2$$
(7)

其中
$$\theta_e = \frac{\theta - \theta_r}{\theta_s - \theta_r} = (1 + |ah|^n)^{-m}$$
 (8)

$$m = 1 - 1/n \quad (n > 1)$$
 (9)

式中 0.——土壤相对饱和度

- θ.、θ.——残余土壤含水率、饱和土壤含水 率.%
- K.——土壤饱和导水率, cm/d

n、m、a----经验参数

l——孔隙关联度参数,一般取平均值0.5

以土壤可溶盐为研究对象,以土壤溶液的盐分 浓度为主要指标,建立土壤二维饱和-非饱和溶质运 移数学模型。土壤盐分运移数学方程为

$$\frac{\partial(\theta c)}{\partial t} = \frac{\partial}{\partial z} \left(\theta D_{zz} \frac{\partial c}{\partial z} - q_z c_z \right)$$
(10)

式中 c_----土壤溶液的盐分质量浓度,g/cm³

D.,---水动力弥散系数, cm²/d

q_----土壤水入渗率, cm/d

- c----液相的盐分质量浓度,g/cm3
- 2.2 定解条件确定

二维土壤水流的初始条件和边界条件如下: 初始条件

$$\theta(z,t)|_{t=0} = \theta_0(z) \quad (Z \leq z \leq 0) \tag{11}$$

上边界

$$-K(\theta) \left(\frac{\partial h}{\partial z} - 1\right) \Big|_{z=0} = -\varepsilon \quad (t > 0, z = 0)$$
(12)

下边界 $h(z,0)|_{z=Z} = h_b$ (t>0)

式中 Z----土壤水盐模型模拟深度,cm

h_b----下边界处负压, cm

 θ_0 ——土壤初始含水率, cm³/cm³

模型上边界为随时间变化的第2类边界条件. 根据实测数据(如降雨量、灌水量)计算出的潜在蒸 发蒸腾量逐日输入模型进行模拟。根据 2017— 2018 年实测地下水埋深最大值为 165 cm,考虑地下 水补给,故将模拟区深度设为200 cm,并将下边界 设为变水头边界,逐日赋值地下水头,左右两测边界 设为零通量边界。

二维土壤盐分的初始条件和边界条件如下. 初始条件

$$c(z,t)|_{t=0} = c_0(z) \quad (0 \le z \le Z)$$
 (14)

上边界

$$-\theta D_{zz}\frac{\partial c}{\partial z} + \varepsilon_1 c = 0 \quad (z = 0, t > 0) \qquad (15)$$

下边界

 $c(z,0) = c_i$ (z = Z,t > 0) (16)式中 c_0 ——初始盐分质量浓度,g/cm³

ε,----蒸发强度,cm/d

 c_1 ——z 层土壤盐分质量浓度,g/cm³

2.3 模型构建

2.3.1 时间离散

模拟整个生育期(2018年6月1日--9月30 日)共122 d 的数据。根据收敛的迭代次数调整时 间步长,采用变时间步长剖分方式。初始时间步长 为0.1d,最小时间步长为0.001d,最大时间步长为 5 d.

2.3.2 空间离散

模拟深度取至地面 200 cm,采用矩形网格剖 分,垂直方向剖面上的土壤为2种土壤质地,分别是 0~20 cm、40~200 cm 粉壤土和 20~40 cm 粉土。 并按照等间距剖分为40个单元层,每层厚5 cm,水 平方向取剖面长度为100 cm,等间隔剖分为10 层, 每层厚10m。

2.3.3 根系吸水项

根系吸水的影响函数采用 Feddes 函数^[22],定 义为

$$S(h) = \partial(h)S_P \tag{17}$$

其中

(13)

$$\partial(h) = \begin{cases} \frac{h_1 - h}{h_1 - h_2} & (h_2 < h \le h_1) \\ 1 & (h_3 \le h \le h_2) \\ \frac{h - h_4}{h_3 - h_4} & (h_4 \le h < h_3) \end{cases}$$
(18)

$$S_p = \frac{1}{L_x L_z} L_t T_p \tag{19}$$

式中 S(h)——单位时间内植物根系从单位体积 土壤中吸取的水体积

- ∂(h)——土壤水压力响应函数,为给定土壤 压力水头的无因次系数(0≤a≤1)
- Sp----潜在最大吸水速率,d⁻¹
- h_1, h_2, h_3, h_4 ——影响根系吸水的土壤水势 阈值
- T_---潜在蒸腾速率, cm/d
- L.----根系深度, cm
- L,-----土壤剖面上根系的宽度,cm
- L,——发生蒸腾作用的土壤表面宽度, cm

2020年

不同作物的根系吸水参数,通过前人研究成果 确定^[23]。

2.3.4 潜在蒸腾速率的计算

HYDRUS 模型通过输入潜在蒸散量来完成作物-土壤水分交换运移过程。并在运算过程中通过 一定的比例因子将潜在蒸散量转换成实际的蒸散 量。

ET₀ 由 FAO 推荐的 Penman – monteith 方法计 $p^{[24]}, 作物潜在蒸腾速率 T_ 计算式为^{[25]}$

$$T_{p} = ET_{0} (1 - e^{-KLAI})$$
 (20)

式中 LAI-----叶面积指数

K——植物灌层辐射衰减系数,向日葵取0.83

2.4 模型参数的率定与检验

2.4.1 模型参数的率定

通过土样颗分试验确定试验区的土壤大多为粉 壤土,结合 HYDRUS 模型中的 Rosseta 模块得到模 型初始土壤水力参数。2018 年数据用于模型土壤 特征参数的率定,2017 年数据用于模型验证,从而 确定参数最优解,如表2、3 所示。

采用试验区 2018 年 6 月 1 日—9 月 30 日农田 观测的分层(25、45、65、85、120 cm)土壤含水率和电 导率(EC)实测数据和模拟数据进行对比分析,如 图 3、4 所示,为了评价模型模拟效果,使用平均绝对 误差(MAE)、均方根误差(RMSE)2 个指标,检验所 建立模型的合理性^[26]。含水率 MAE、RMSE 分别为

表 2 校正后土壤水力参数

Tab. 2 Calibrated soil hydraulic parameters

土层深度/	A /0%	$ heta_{s}$ /%			$K(\theta)/$	土壤
cm	$\theta_r / \%$		a	n	$(\mathrm{cm}{\boldsymbol{\cdot}}\mathrm{d}^{-1})$	类型
0 ~ 20	15	35	0.0072	1.81	7.89	粉壤土
$20\sim\!40$	20	42	0.0087	1.83	27.02	粉土
$40\sim\!60$	23	49	0.0073	1.79	28.12	粉壤土
$60 \sim 80$	23	49	0.0082	1.65	7.89	粉壤土
$80 \sim 100$	30	52	0.0083	1.72	10.23	粉壤土
$100\sim 120$	18	47	0.0100	1.72	21.22	粉壤土
$120\sim\!140$	20	49	0.0087	1.64	20.18	粉壤土
$140\sim\!160$	23	50	0.0078	1.68	22.56	粉壤土
$160\sim\!180$	22	51	0.0078	1.79	25.62	粉壤土
180 ~ 200	30	52	0.0098	1.82	23.11	粉壤土

表 3 校正后的溶质运移参数

Tab. 3 Calibrated soil solute migration parameters

土壤类型	横向弥散度/	纵向弥散度/	自然扩散系数/		
	cm	cm	$({\rm cm}^2{\boldsymbol{\cdot}}{\rm d}^{-1})$		
粉质壤土	79	2	1		
粉土	88	6	1		

1.8% ~5.3%、2.1% ~4.2%,电导率 MAE、RMSE 分别为 0.078 ~0.22 dS/m、0.065 ~0.31 dS/m。土 壤盐分模拟精度略微差一些,尤其表层土壤盐分的 模拟。这主要由于盐分的迁移复杂具有很大的不确 定性且表层土壤易受气候条件、人类活动等因素影 响。文中所建模型求解可靠。

Fig. 3 Comparison of measured and fitted soil water content at different soil profiles

2.4.2 模型参数的检验

采用试验区 2017 年 6 月 1 日—9 月 30 日的土 壤含水率和电导率(EC)实测数据和模拟数据进行 验证。

如图 5 所示, 土壤含水率、电导率模拟值与实测 值基本分布在 1:1线附近, 含水率模拟计算中 MAE、 RMSE 分别为 2.3%、4.5%。土壤盐分模拟计算 MAE、RMSE 分别为 0.12、0.33 dS/m。说明实测值 与模拟值一致, 所构建的模型可行。

3 结果与讨论

3.1 田间最优灌水量设计

灌水定额小,盐分淋洗不充分,根层盐分累积量 会增加,作物生长易受盐分胁迫影响^[9]。而灌水定 额大,虽能促进土壤盐分向根层以下淋洗,但一方面 易造成灌后返盐,不易于盐碱地的改良且造成水资 源的浪费^[27],另一方面当水分过剩时,向日葵会出 现"四低"现象,即叶片的低膨胀、低光合速率、低产

量、低根生物量,而且会加速植株的衰老^[28-29]。因此,研究不同灌水量对土壤水盐运移的影响,提出有效洗盐、合理用水的灌溉定额,是实现研究区水资源的合理利用及次生盐碱地防治的有效途径。本文通过模型分别对生育期7种灌水量(表4,其中*M*表示试验区实际灌水定额)下土壤水盐运移进行模拟,确定研究区合理田间灌溉模式,为当地农业生产制定合理灌水制度提供理论依据。

3.1.1 不同灌水量对土壤含水率的影响

2018 年生育期土壤剖面各层水分变化过程如 图 6 所示,在灌溉期内,不同灌水量下的土壤含水率 变化趋势基本一致,灌水量与土壤含水率成正比。 从不同土壤深度来看,25、45、65、85、120 cm 土壤平 均含水率分别为 30%、34%、38%、42%、47%,呈现 出土壤含水率随着土壤深度的增大而增加的趋势。 表层土壤受灌水影响较大,随着土层深度增加灌溉 对土壤含水率的影响逐渐减小,120 cm 土壤含水率 基本维持稳定。灌后 10 d,灌水对土壤水盐运移影 响微弱,进入非灌溉期,期间受降雨和蒸发的影响,

表 4 不同灌水量情景 Tab. 4 Different irrigation scenarios

年份 -	灌水定额						
	M - 10% M	M-20%M	M - 30% M	М	M+10%M	M+20%M	M+30%M
2017	85.5	76.0	66.5	95.0	104. 5	114.0	123. 5
2018	82.8	73.6	64.4	92.0	101.2	110.4	119.6

表层土壤含水率变动较为频繁且幅度较大,而深层 土壤含水率主要受地下水位变化的影响,变化幅度 较小。整体来看,由于灌溉和浅埋地下水位,研究时 段内耕地土壤含水率均维持在较高水平。

3.1.2 土壤含水率变化特征

研究区实测田间持水率为 37%, 凋萎系数为 12%。向日葵主根区通常分布在 0~60 cm 范围内, 以 2018 年为例, 播种期—收获期内主根区(0~ 60 cm)平均土壤含水率如图 7(图中△为灌水影响, ○为降雨影响,□为附近灌水影响)所示。由图可 知,由于当地地下水位较浅,且受灌水及降雨的影 响,各处理土壤含水率在生育期内均高于凋萎系数, 生育期土壤大多时间处于水分充足的环境。单就土 壤水分来说,不同灌水量均满足向日葵生育期生长 所需水量。由此说明,土壤水分并不是限制研究区 作物生长发育的主要因素。

3.1.3 不同灌水量对土壤含盐量的影响

图 8 为 2018 年各灌水处理下向日葵生育期内

mm

各土层土壤电导率变化情况。在灌溉期内,土壤盐 分变化趋势与水分波动相反,受灌水影响,各处理 0~65 cm 土层深度盐分明显减小,随着灌水量增大 土壤含盐量降低程度越大,但随着灌水量增加至 82.8 mm 时,这一趋势开始明显减缓。由于灌区排 水不畅,淋洗下去的盐分不能及时排出,导致土壤盐 分积聚于深层土壤,随着灌水定额的增大,深层土壤 盐分累积呈先增加后减少的趋势,各灌水处理导致 85 cm 土层电导率增至0.99~1.1 dS/m 之间。由此 可以看出,本设计范围内灌水量对降低主根区(0~ 60 cm)盐分效果明显。在作物非灌溉期内,除降雨 会产生和灌溉对土壤盐分淋洗一样的效果外,由于 研究区地下水埋深较浅,土壤水及潜水强烈蒸发,导 致盐分又会随着土壤水分向上迁移,再次积累在土 壤中。

3.1.4 土壤洗盐率与灌水量的关系

2017、2018 年受不同灌水量的影响 S_i随时间 变化趋势基本一致(图9)。在灌水后不同时间, S_i均随着灌水量增大呈增加态势。各灌水量下 S_i 均在灌水后 3 d 达到最大值,而随着时间推移, 0~120 cm 剖面内 S_i逐渐减小,进入积盐期,这是 因为研究区潜水蒸发强烈,土壤水分由下渗转为 上移,从而带动盐分向上层集聚。在灌水后 10 d,灌水量低于 82.8 mm 时 S_i均为负值,说明 此时只有当灌水量达到82.8 mm 以上时才可以 达到洗盐效果。

3.1.5 边际土壤洗盐率的变化

以试验区 0~120 cm 土层剖面含盐量随着灌水 后时间推移与其灌水前相比的盐分变化量为计算基 准,得到 S(Z_t)的变化如图 10 所示。可以看出,当

图 8 不同灌水量下土壤各土层电导率变化曲线

灌水量相同时,随着时间推移,S(Z_i)呈先增加后减 少趋势,在灌水后3d,2年内灌水量分别为85.5、 82.8 mm时,S(Z_i)最高,分别较其余灌水处理高 8.84%~69.81%和9.34%~68.72%。随着时间 推移,各处理S(Z_i)均开始降低,但依然表现出灌水 量为85.5、82.8 mm高于其他处理。由此表明,灌溉 量过小达不到洗盐效果,而灌水量较大洗盐效率降 低,造成水资源浪费。

3.2 基于土壤水-地下水的水盐调控模式

灌水量和地下水位的调控是对水资源有效利用 及土壤盐渍化管理的关键。基于研究区制定的合理 灌溉制度和地下水埋深可以有效降低土壤积盐量, 防止植物被盐害,同时增加土壤水分利用效率,这对 作物的生长与增产具有重要的作用。因此,研究试 验区土壤盐分受灌溉和地下水位变化的影响十分必 要。本文利用验证后的数值模型,通过改变灌水量

Fig. 10 Relationship between irrigation amount and marginal wash salt rate

和地下水位来进行模拟分析,探寻研究区最优灌水 制度及合理的地下水埋深。前人研究表明,土壤积 盐程度主要与地下水埋深和矿化度密切相关^[30-31]. 地下水浅埋区,土壤盐渍化的盐分主要来自于地下 水^[32],其积盐量与潜水蒸发量密切相关^[33]。地下 水浅埋区的蒸发量较大,水分强烈向上运移,不仅使 地下水中盐分易浓缩,而且加剧了表层土壤积 盐[34].作物易受盐渍化迫害[35-36]。而地下水埋深 过大,毛管上升水流很难到达植物根系层,不利于植 被的生长与发育[37]。研究发现,当地下水埋深超过 2.50 m 之后,毛管上升和地下水对作物生长的作用 很小^[38-39]。也有学者认为,当地下水埋深超过3m 将会对作物生长发育和生态环境产生不利影响^[40]。 因此设置合理的地下水埋深对于改善土壤水盐状况 和植被生长环境起着关键作用。前期研究表明,向 日葵由于在生育期内只进行一次灌水,因此,本研究 基于不同灌水量情景进一步对地下水埋深情景进行预 测分析。研究区地下水埋深较浅(平均为100.72 cm),

故基于试验区地下水埋深的基础上分别增加30、 60、90、120、150 cm 进行数值模拟。2017、2018 年不 同灌水处理下土壤盐分对地下水埋深变动的响应规 律趋于一致(图11.图中W为试验区实际地下水埋 深),结果表明,不同灌水量下,较浅的地下水埋深 对土壤盐分调控能力有限,随着地下水埋深增大土 壤洗盐率逐渐增加,但当地下水埋深到达160.72 cm 时,对土壤盐分调控趋于平缓,并且考虑到地下水浅 埋深为作物提供水分的作用,地下水埋深不能过深。 在同一地下水埋深条件下,随着灌水量增加土壤洗 盐率增大,当灌水量增至M-10%M时,再继续增大 灌水量对土壤盐分淋洗效果不明显。以 2018 年的 M-10% M 灌水量为例,分析不同地下水埋深对土 壤盐分变化的影响发现,当地下水埋深从100.72 cm 增加到 130.72、160.72、190.72、220.72、250.72 cm 时,土壤洗盐率(灌水后3d盐分减少量与灌水前含 盐量之比)分别增加了 23.44%、53.45%、60.31%、 60.85%、61.05%。因此,综合对水资源利用、生态

环境方面的考虑,研究区适宜的灌水量及地下水埋 深分别为 82.8~85.5 mm 及 160.72 cm。

4 结论

(1)利用 HYDRUS - 2D 模型对河套灌区向日 葵农田不同灌水制度和不同地下水埋深的土壤水盐 运移时空变异规律进行模拟,经田间试验实测数据 验证,该模型在校准和验证阶段均具有较好性能,能 够模拟水盐在土壤中的分布和随时空变化的趋势。 (2)整体来看,土壤含水率及洗盐率均随着灌水量的增加而增大。不同灌水量对边际土壤洗盐率的效应呈抛物线型变化,2017、2018 年灌水量分别为 85.5、82.8 mm时,边际洗盐率呈最大值,随后开始逐渐降低。因此,当地较优灌水量为 82.8 ~ 85.5 mm。

(3) 以 2018 年为例,通过对不同灌水量和不同 地下水埋深的模拟得出,当灌水量为 82.8 mm、地下 水埋深为 160.72 cm 时,对于研究区盐分调控最为 有利。

参考文献

- [1] 刘迁迁,苏里坦,刘广明,等. 伊犁察南灌区土壤盐分时空变异特征与运移机理研究[J/OL]. 农业机械学报, 2017, 48(12):221-228.
 - LIU Qianqian, SU Litan, LIU Guangming, et al. Spatio-temporal variation and migration mechanism of soil salinity in Chanan irrigation area of Ili[J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48 (12):221 228. http://www.j-csam.org/jcsam/ch/reader/view_abstract.aspx? file_no = 20171226&flag = 1. DOI:10.6041/j.issn.1000-1298.2017. 12.026. (in Chinese)
- [2] FERREIRA A C C, LEITE L F C, ARAUJO A S F, et al. Land-use type effects on soil organic carbon and microbial properties in a semi-arid region of Northeast Brazil[J]. Land Degradation & Development, 2016, 27(2):171-178.
- [3] 孙三民, 安巧霞, 蔡焕杰, 等. 枣树间接地下滴灌根区土壤盐分运移规律研究[J/OL]. 农业机械学报, 2015, 46(1): 160-169.

SUN Sanmin, AN Qiaoxia, CAI Huanjie, et al. Research on salt movement law in jujube root zone under indirect subsurface drip irrigation [J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(1):160 - 169. http://www.j-csam.org/jcsam/ch/reader/view_abstract.aspx? file_no = 20150124&flag = 1. DOI:10.6041/j.issn.1000-1298.2015.01.024. (in Chinese)

- [4] SHRIVASTAVA P, KUMAR R. Soil salinity: a serious environmental isue and plant growth promoting bacteria as one of the tools for its alleviation [J]. Saudi Journal of Biological Sciences, 2015, 22(2):123-131.
- [5] GLICK B R, CHENG Z, CZARNY J, et al. Promotion of plant growth by ACC deaminase-producing soil bacteria[J]. Eur. J. Plant Pathol, 2007, 119(3): 329 339.
- [6] 国家统计局:中国统计年鉴 2016[M].北京:中国统计出版社,2016.
- [7] ZHANGA J, ZHUB Y, ZHANGA X, et al. Developing a long short-term memory (LSTM) based model for predicting water table depth in agricultural areas[J]. Journal of Hydrology, 2018, 561:918-929.
- [8] 白岗栓,张蕊,耿桂俊,等.河套灌区农业节水技术集成研究[J].水土保持通报,2011(1):149-154.
 - BAI Gangshuan, ZHANG Rui, GENG Guijun, et al. Integrating agricultural water-saving technologies in Hetao Irrigation District [J]. Bulletion of Soil and Water Conservation, 2011(1):149-154. (in Chinese)
- [9] 田富强, 温洁, 胡宏昌, 等. 滴灌条件下干旱区农田水盐运移及调控研究进展与展望[J]. 水利学报, 2018,49(1): 126-135.

TIAN Fuqiang, WEN Jie, HU Hongchang, et al. Review on water and salt transport and regulation in drip irrigated fields in arid regions [J]. Journal of Hydraulic Engineering, 2018, 49(1):126-135. (in Chinese)

[10] 魏阳, 丁建丽, 王飞, 等. 新疆玛纳斯流域非农业种植地盐碱性空间变异特征[J]. 生态学报, 2016, 36(23):7655 - 7666.

WEI Yang, DING Jianli, WANG Fei, et al. Analysis of the spatial variational characteristics of saline-alkaline soil types in non-agriculture land in Manas River Basin Xinjiang China [J]. Acta Ecologica Sinica, 2016, 36 (23): 7655 - 7666. (in Chinese)

- [11] SHAO Weiwei, YANG Dawen, HU Heping, et al. Water resources allocation considering the water use flexible limit to water shortage—a case study in the Yellow River Basin of China[J]. Water Resources Management, 2009, 23(5): 869 880.
- [12] 刘小刚,符娜,李闯,等. 河南省主粮作物需水量变化趋势与成因分析[J/OL]. 农业机械学报, 2015, 46(9):188-197. LIU Xiaogang, FU Na, LI Chuang, et al. Trends and causes analysis of water requirement for main grain crops in Henan Province[J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(9):188-197. http://www.j-csam.org/jcsam/ch/reader/view_abstract.aspx? file_no = 20150927&flag = 1. DOI:10.6041/j.issn.1000-1298.2015.09. 027. (in Chinese)
- [13] 胡永翔,李援农,张莹.黄土高原区滴灌枣树作物系数和需水规律试验[J/OL].农业机械学报,2012,43(11):87-91.
 HU Yongxiang, LI Yuannong, ZHANG Ying, et al. Experiment on crop coefficient and water requirement of drip-irrigation jujube in Loess Plateau of China[J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(11):87 91. http://www.j-csam.org/jcsam/ch/reader/view_abstract.aspx? file_no = 20121116&flag = 1. DOI:10.6041/j.issn. 1000-1298.2012.11.016. (in Chinese)
- [14] 郄志红,韩李明,吴鑫森. 基于改进 NSGA II 的作物灌水量与灌溉日期同步优化[J]. 农业机械学报,2011,42(5): 106-110.

QIE Zhihong, HAN Liming, WU Xinmiao. Optimization of crop irrigation quantity and irrigation date based on the improved NSGA – II [J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(5):106 – 110. (in Chinese)

[15] 范雷雷, 史海滨, 李瑞平, 等. 河套灌区畦灌灌水质量评价与优化[J/OL]. 农业机械学报, 2019, 50(6): 325 - 337.
 FAN Leilei, SHI Haibin, LI Ruiping, et al. Evaluation and optimization of border irrigation performance in Hetao Irrigation

District[J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2019,50(6):325 - 337. http://www.jcsam.org/jcsam/ch/reader/view_abstract.aspx? file_no = 20190636&flag = 1. DOI:10.6041/j.issn. 1000-1298.2019.06. 036. (in Chinese)

[16] 毛晓敏,尚松浩.作物非充分灌溉制度优化的0-1规划模型建立与应用[J/OL].农业机械学报,2014,45(10):153-158,123.

MAO Xiaomin, SHANG Songhao. Application of 0-1 programming model on optimization of crop deficit irrigation schedule [J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(10):153 – 158, 123. http://www.j-csam.org/jcsam/ch/reader/view_abstract.aspx? file_no = 20141024&flag = 1. DOI:10.6041/j.issn.1000-1298.2014.10.024. (in Chinese)

- [17] GAO X, HUO Z, QU Z, et al. Modeling contribution of shallow groundwater to evapotranspiration and yield of maize in an arid area[J]. Scientific Reports, 2017, 7:43122.
- [18] 魏光辉,马亮,杨鹏年.地下水位与灌溉定额对棉花土壤水分的动态影响模拟[J]. 排灌机械工程学报,2016,34(1): 73-80.

WEI Guanghui, MA Liang, YANG Pengnian. Dynamic simulation of groundwater level and irrigation quota effects on cotton soil water content [J]. Journal of Drainage and Irrigation Machinery Engineering, 2016, 34(1):73 – 80. (in Chinese)

- [19] FENG Z Z, WANG X K, FENG Z W. Soil N and salinity leaching after the autumn irrigation and its impact on groundwater in Hetao Irrigation District, China [J]. Agricultural Water Management, 2005, 71(2):131-143.
- [20] BURKHALTER J P, GATES T K. Agroecological impacts from salinization and waterlogging in an irrigated river valley [J]. Journal of Irrigation and Drainage Engineering, 2005, 131(2):197-209.
- [21] 徐旭,黄冠华,屈忠义,等.区域尺度农田水盐动态模拟模型——GSWAP[J].农业工程学报,2011,27(7):58-63. XU Xu, HUANG Guanhua, QU Zhongyi, et al. Regional scale model for simulating soil water flow and solute transport processes—GSWAP[J]. Transactions of the CSAE, 2011, 27(7):58-63. (in Chinese)
- [22] FEDDES R A. Simulation of field water use and crop yield [J]. Soil Science, 1978, 129(3):193.
- [23] 任东阳. 灌区多尺度农业与生态水文过程模拟[D]. 北京:中国农业大学,2018.

ERN Dongyang. Multi-scale modeling of the agro-eco-hydrological processes in irrigation district [D]. Beijing: China Agricultural University, 2018. (in Chinese)

- [24] ALLEN R G, PEREIRA L S, RAED D, et al. Crop evapotranspiration guidelines for computing crop water requirement—FAO Irrigation and Drainage Paper 56[M]. Rome:FAO,1998.
- [25] PRASAD R. A linear root water uptake model[J]. Journal of Hydrology, 1988, 99(3/4):297-306.
- [26] REN D, XU X, HAO Y, et al. Modeling and assessing field irrigation water use in a canal system of Hetao, upper Yellow River basin: application to maize, sunflower and watermelon[J]. Journal of Hydrology, 2016, 532:122-139.
- [27] 巨龙,王全九,王琳芳,等.灌水量对半干旱区土壤水盐分布特征及冬小麦产量的影响[J].农业工程学报,2007,23(1): 86-90.

JU Long, WANG Quanjiu, WANG Linfang, et al. Effects of irrigation amounts on yield of winter wheat and distribution characteristics of soil water-salt in semi-arid region [J]. Transactions of the CSAE, 2007,23(1): 86-90. (in Chinese)

- [28] ORCHARD P W, JESSOP R S. The response of sorghum and sunflower to short-term waterlogging[J]. Plant and Soil,1984, 81(1):119-132.
- [29] GRASSINI P, INDACO G V, PEREIRA M L, et al. Responses to short-term waterlogging during grain filling in sunflower[J]. Field Crops Research, 2007, 101(3):352-363.
- [30] XIA J, ZHAO X, CHEN Y, et al. Responses of water and salt parameters to groundwater levels for soil columns planted with tamarix chinensis[J]. PLOS ONE, 2016, 11(1):e0145828.
- [31] CUI G Q, LU Y D, ZHENG C E, et al. Relationship between soil salinization and groundwater hydration in Yaoba Oasis, Northwest China[J]. Water, 2019, 11(1):175.
- [32] 张德强,邵景力,李慈君,等.地下水浅埋区土壤水的矿化度变化规律及其影响因素浅析[J].水文地质工程地质,2004 (1):52-56.

ZHANG Deqiang, SHAO Jingli, LI Cijun, et al. Study on the variation and influence factor of soil-water mineral degree in shallow groundwater areas[J]. Hydrogeology & Engineering Geology,2004(1):52-56. (in Chinese)

- [33] 刘广明,杨劲松,李冬顺. 地下水蒸发规律及其与土壤盐分的关系[J]. 土壤学,2002,39(3):384-389. LIU Guangming, YANG Jinsong, LI Dongshun. Evaporation regularity and its relationship with soil salt[J]. Acta Pedologica Sinica,2002,39(3):384-389. (in Chinese)
- [34] 崔亚莉,张德强,邵景力,等.地下水浅埋区土壤 TDS 变化规律分析[J].水土保持学报,2004,18(1):185-188. CUI Yali,ZHANG Deqiang,SHAO Jingli, et al. Study on variation and influence factor of soil-water TDS in shallow groundwater areas [J]. Journal of Soil and Water Conservation,2004,18(1):185-188. (in Chinese)
- [35] GREENE R, TIMMS W, RENGASAMY P, et al. Soil and aquifer salinization: toward an integrated approach for salinity management of groundwater[M] // Integrated groundwater management. Springer International Publishing, 2016.
- [36] RENGASAMY P. World salinization with emphasis on Australia[J]. Journal of Experimental Botany, 2006, 57(5):1017–1023.
- [37] 邢旭光,赵文刚,马孝义. 盐渍土壤覆膜种植条件潜水蒸发的探讨与分析[J]. 排灌机械工程学报, 2016,34(1):57-65. XING Xuguang, ZHAO Wengang, MA Xiaoyi. Exploration and analysis of groundwater evaporation of saline soil under film mulching condition[J]. Journal of Drainage and Irrigation Machinery Engineering, 2016,34(1):57-65. (in Chinese)
- [38] XU X, HUANG G, CHEN S, et al. Assessing the effects of water table depth on water use, soil salinity and wheat yield: searching for a target depth for irrigated areas in the upper Yellow River basin[J]. Agricultural Water Management, 2013, 125 (7):46-60.
- [39] 郝远远, 徐旭, 黄权中,等. 土壤水盐与玉米产量对地下水埋深及灌溉响应模拟[J]. 农业工程学报, 2014, 30(20): 128-136.

HAO Yuanyuan, XU Xu, HUANG Quanzhong, et al. Modeling soil water-salt dynamics and maize yield responses to groundwater depths and irrigations [J]. Transactions of the CSAE, 2014, 30(20):128-136. (in Chinese)

[40] 阮本清,张仁铎,李会安.河套灌区水平衡机制及耗水量研究[M].北京:科学出版社,2008.