doi:10.6041/j.issn.1000-1298.2019.05.036

秸秆还田下土壤水分时间稳定性与玉米穗质量的相关性

刘继龙!任高奇!付强!张玲玲?李佳文!于凯!

(1. 东北农业大学水利与土木工程学院,哈尔滨 150030; 2. 东北农业大学理学院,哈尔滨 150030)

摘要:为揭示黑土区秸秆还田条件下农田土壤水分时间稳定性与玉米穗质量的相互关系,基于 TDR 法测得的土壤 含水率(2017 年 6—9 月)及称量法测得的玉米穗质量,在确定秸秆还田条件下农田土壤水分时间稳定性特征的基 础上,量化分析其时间稳定性与玉米穗质量在单一尺度和多尺度上的相关特征。结果表明:随土层深度增加,土壤 水分时间稳定性逐渐增强,且较深土层(40~60 cm、60~80 cm)土壤含水率较高的测点时间稳定性较强;随土层深 度变化,土壤水分代表性测点有所不同,利用代表性测点土壤含水率可确定研究区域土壤最低含水率、最高含水率 和平均含水率等信息,可为土壤水分估算与调控提供科学指导;时间稳定性与穗粒质量、穗轴质量相关程度随土层 深度的变化趋势在单一尺度和多尺度上不同,大部分土层土壤水分时间稳定性与穗粒质量、穗轴质量的多尺度相 关程度均大于单一尺度相关程度。多尺度相关分析能更深入地确定土壤水分时间稳定性与穗质量的相互关系,进 而为深入揭示土壤水分对作物产量的影响机制提供理论依据。

关键词:秸秆还田;土壤含水率;时间稳定性;玉米穗质量;多尺度相关性 中图分类号:S152.7 文献标识码:A 文章编号:1000-1298(2019)05-0320-07

Relationship between Temporal Stability of Soil Water and Corn Ear Weight under Straw Returning

LIU Jilong¹ REN Gaoqi¹ FU Qiang¹ ZHANG Lingling² LI Jiawen¹ YU Kai¹

(1. School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
 2. College of Science, Northeast Agricultural University, Harbin 150030, China)

Abstract: In order to reveal relationship between temporal stability of soil water and corn ear weight under straw returning in black soil region, based on soil water content measured with TDR during June and September 2017 and corn ear weight measured with weighing method, the temporal stability of soil water under straw returning was firstly determined, and then the relationship between temporal stability of soil water and corn ear weight at the single scale and multi-scale was quantitatively analyzed. The results showed that the temporal stability of soil water was increased with the increase of soil depth, and the sampling points in deeper soil layer (40 \sim 60 cm and 60 \sim 80 cm) which had higher soil water content had higher temporal stability; as soil depth changed, representative points of soil water under different situations were not identical, and the lowest, highest and average soil water contents for studied area could be determined with representative points of soil water content which could provide scientific guidance for estimation and regulation of soil water; the changing trend of correlation degree between temporal stability of soil water and grain weight per ear and axis weight per ear at multi-scale was different from the one at the single scale, correlation degree between temporal stability of soil water in most soil layers and grain weight per ear and axis weight per ear at multi-scale was more than the one at the single scale, and relationship between temporal stability of soil water and corn ear weight could be determined further with multi-scale correlation analysis, which could provide theory basis for deeply revealing the

收稿日期: 2018-11-30 修回日期: 2019-01-20

基金项目:国家自然科学基金项目(51409046)、黑龙江省自然科学基金项目(E2018005)、东北农业大学学术骨干项目(16XG12)、黑龙江 省博士后科研启动金项目(LBH - Q16023)、东北农业大学青年才俊项目(17QC25)和黑龙江省博士后资助经费项目(LBH - Z17009)

作者简介:刘继龙(1981—),男,副教授,博士,主要从事农业水土工程研究,E-mail: liujilong1981@163.com

通信作者: 付强(1973—), 男, 教授, 博士生导师, 主要从事农业水土工程研究, E-mail: fuqiang_neau@163. com

influence of soil water on crop yield. Research results could provide theoretical foundation and guidance to estimate and manage soil water and increase crop yield.

Key words: straw returning; soil water content; temporal stability; corn ear weight; multi-scale correlation

0 引言

东北黑土区是我国重要商品粮基地,受该区特 殊自然因素及人为因素影响,黑土区土壤退化严重, 土壤保水和供水等性质不断恶化。因此,科学合理 地利用黑土区农田土壤水分显得尤为重要。秸秆还 田是改良土壤结构、提高土壤保水和供水能力以及 增加作物产量的一个重要手段[1],在解决黑土区土 壤退化,合理调控、管理和高效利用农田水分方面得 到广泛应用,目前国内外学者围绕秸秆还田对土壤 水分和作物产量的影响已进行了诸多研究^[2-3]。进 行农田水分调控和管理,需要掌握农田土壤水分最 低含量、最高含量和平均状况等信息。土壤水分时 间稳定性[4]是土壤水分的一个重要特征,研究时间 稳定性可以确定土壤水分代表性测点,通过代表性 测点可以掌握研究区土壤水分最低含量、最高含量 和平均状况等信息[5],同时可以减少土壤水分测点 数和观测次数,省时省力。目前国内外学者从不同 土地利用类型[6-8]、不同土层深度[9-10]、不同气候 区[11-12]和不同空间尺度[13-14]等方面研究土壤水分 时间稳定性,并取得了很多成果,但没有关于秸秆还 田条件下农田土壤水分时间稳定性的研究。农田土 壤水分估算、调控和管理目的是为了创造有利于作 物生长的水土环境,关于土壤水分时间稳定性与作 物关系的研究也非常缺乏。因此,本文利用联合多 重分形等方法,研究秸秆还田条件下黑土区农田土 壤水分时间稳定性及其与玉米穗质量在单一尺度和 多尺度上的相关性,以期为秸秆还田条件下黑土区 农田土壤水分估算与管理以及作物产量提高提供理 论基础与依据。

1 材料与方法

1.1 采样点布置

试验地(96 m×96 m)位于东北农业大学向阳试 验示范基地,将试验地分成 64 个 12 m×12 m 的正 方形网格,采样点设在每个 12 m×12 m 的网格中心 (图 1),土壤水分采样点由南向北分为 8 行,采样点 序号从第 1 行由西向东排序,第 1 行排序结束后,继 续从第 2 行由西向东排序,以此类推,直至所有采样 点排序结束。在每个采样点都埋设 1 m 长的 TDR 土壤水分探管,分别于 2017 年 6 月 6 日、6 月 19 日、 6月26日、7月2日、7月12日、7月28日、8月2 日、8月5日、8月11日、8月19日、8月24日、8月 29日、9月12日,利用TDR土壤水分测量仪测定每 个采样点0~20 cm、20~40 cm、40~60 cm、60~80 cm 土层的土壤含水率。试验地2016年种植玉米,玉米 成熟后,利用收获机收割玉米,同时将粉碎的秸秆留 在地表。2017年4月24日翻地起垄,翻地深度为 20~30 cm,翻地时将2016年留在地表的玉米秸秆 埋入土壤。2017年4月26日利用播种机进行玉米 播种,品种为"九单48",播种时,同时施用倍丰复混 肥料,参考当地施肥标准,使用量为300 kg/hm²,玉米 生长期间追施昆仑尿素(2017年7月8日),使用量 为360 kg/hm²,试验地没有灌溉,采用天平测得玉米 穗粒质量和穗轴质量。

1.2 研究方法

(1)相对偏差

测点 i 处测定时间 j 时土壤含水率 θ_{ij} 相对偏差 δ_{ii} 的计算公式为^[4]

$$\delta_{ij} = (\theta_{ij} - \overline{\theta}_j) / \overline{\theta}_j \tag{1}$$

其中
$$\overline{\theta}_j = \frac{1}{n} \sum_{i=1}^n \theta_{ij}$$

任一测点 i 处土壤含水率平均相对偏差 δ_i 的计

算公式为

$$\bar{\delta}_i = \frac{1}{m} \sum_{j=1}^m \delta_{ij} \tag{2}$$

式中 m-----试验测定总次数

任一测点 i 处土壤含水率相对偏差的标准差 $\sigma(\delta_i)$ 的计算公式为

$$\sigma(\delta_i) = \sqrt{\frac{1}{m-1} \sum_{j=1}^m (\delta_{ij} - \overline{\delta_i})^2}$$
(3)

当某样点平均相对偏差为0时,该样点代表研究区土壤含水率平均状况;当某样点平均相对偏差为正值或负值时,该样点土壤含水率分别高于或低于研究区土壤含水率平均状况。某样点相对偏差的标准差越小,该样点土壤水分的时间稳定性越强;在选取代表研究区土壤平均含水率的样点时,遵循样点平均相对偏差接近于0(在±5%之内视为接近于0),且其标准差较小的原则^[7]。

(2)联合多重分形

利用联合多重分形方法确定 2 个变量在多尺度 上的相关性时,需要确定的联合多重分形参数为 $\alpha(q_1,q_2)$, $\beta(q_1,q_2)$ 和 $f(\alpha,\beta)$,计算公式为^[15]

$$\alpha(q_{1},q_{2}) = -(\lg N(\delta))^{-1} \sum_{i=1}^{N(\delta)} (\mu_{i}(q_{1},q_{2},\delta) \lg p_{i,1}(\delta)) (4) \beta(q_{1},q_{2}) = -(\lg N(\delta))^{-1} \sum_{i=1}^{N(\delta)} (\mu_{i}(q_{1},q_{2},\delta) \lg p_{i,2}(\delta))$$
(5)

$$f(\boldsymbol{\alpha},\boldsymbol{\beta}) = -(\lg N(\boldsymbol{\delta}))^{-1} \cdot \sum_{i=1}^{N(\boldsymbol{\delta})} (\boldsymbol{\mu}_i(q_1,q_2,\boldsymbol{\delta}) \lg \boldsymbol{\mu}_i(q_1,q_2,\boldsymbol{\delta}))$$
(6)

其中

$$p_{i,2}(\delta) = \frac{\mu_{i,2}}{\sum_{i=1}^{N(\delta)} \mu_{i,2}}$$

 $p_{i,1}(\delta) = \frac{\mu_{i,1}}{\frac{N(\delta)}{N(\delta)}}$

$$\mu_{i}(q_{1},q_{2},\delta) = \frac{p_{i,1}(\delta)^{q_{1}}p_{i,2}(\delta)^{q_{2}}}{\sum_{i=1}^{N(\delta)}p_{i,1}(\delta)^{q_{1}}p_{i,2}(\delta)^{q_{2}}}$$

式中
$$\delta$$
——-尺度
 $N(\delta)$ ——-尺度为 δ 时划分的网格数
 $p_{i,1}(\delta)$ ——-变量 1 的质量概率
 $\mu_{i,1}$ ——第 i 处变量 1 的值
 $p_{i,2}(\delta)$ ——-变量 2 的质量概率
 $\mu_{i,2}$ ——第 i 处变量 2 的值
 q_1,q_2 ——实数
 $\alpha(q_1,q_2)$ ——-变量 1 的联合奇异指数
 $\beta(q_1,q_2)$ ——-变量 1 和变量 2 联合奇异指数的
维数分布函数

2 结果与分析

2.1 秸秆还田条件下土壤含水率与玉米穗质量的 经典统计特征

由表1可知,取样时间范围内不同土层土壤平 均含水率分别介于12.15%~18.77%、12.79%~ 18.93%、12.24%~17.03%、14.61%~20.08%;变 异系数分别介于0.1678~0.2848、0.1302~0.1923、 0.1054~0.2267、0.0747~0.1769,0~20 cm、20~ 40 cm、40~60 cm 土层土壤含水率为中等变异,6月 6日至8月2日60~80 cm 土层土壤含水率为弱变 异,8月5日至9月12日60~80 cm 土层为中等变 异。玉米穗粒质量、穗轴质量的平均值分别为 214.28、30.18g,变异系数分别为0.2320、0.2687, 均为中等变异。

Fab. 1	Statistical	characteristics	values	of soil	water	content

参数	土层深	日期												
	度/cm	06 - 06	06 - 19	06 - 26	07 - 02	07 - 12	07 - 28	08 - 02	08 - 05	08 - 11	08 – 19	08 - 24	08 - 29	09 - 12
平均值/%	0~20	16.37	17.38	17.10	17.34	14. 57	12.15	12.39	18.77	18.10	16.15	14.76	14.47	15.74
	$20\sim\!40$	15.85	17.36	16.89	16.88	15.59	13.22	12.79	18.93	18.58	18.22	17.13	17.13	16.53
	$40\sim\!60$	13.27	14.23	13.81	14.26	13.87	12.66	12.24	16. 28	17.03	16.30	16.12	15.58	14.67
	$60\sim\!80$	15.93	17.53	17.20	17.51	16. 99	14. 98	14.61	19.16	20.08	19.33	18.47	18.49	17.06
	$0 \sim 20$	0. 186 9	0.1801	0. 199 4	0. 192 6	0.2135	0.2848	0. 241 3	0.1678	0.1707	0. 185 8	0. 201 9	0.2080	0. 194 4
变异系数	$20\sim\!40$	0. 132 5	0.1340	0.1563	0. 149 9	0.1302	0.1687	0. 192 3	0.1664	0.1776	0.1553	0. 155 9	0.1483	0.1543
	$40\sim\!60$	0. 107 0	0. 105 4	0.1260	0. 129 7	0.1161	0.1280	0. 129 9	0. 226 7	0.2231	0.2000	0. 192 3	0. 195 8	0. 186 8
	$60 \sim 80$	0.0747	0. 090 1	0.0924	0. 095 9	0.0871	0. 086 8	0. 084 9	0. 176 9	0. 149 9	0. 137 6	0. 144 0	0. 130 3	0. 123 7

2.2 秸秆还田条件下土壤含水率的相对偏差分析

由图 2 可以看出,较深土层(40~60 cm 和 60~ 80 cm)土壤含水率平均相对偏差空间分布特征的相 似程度较高。不同土层土壤含水率平均相对偏差的 波动幅度分别为 79.59%、55.74%、55.65%、 43.86%,波动幅度随土层深度增加而减小。不同土 层土壤含水率平均相对偏差的最大值均大于最小值 的绝对值,与高磊^[16]和 HU 等^[17]的研究结果一致, ZHAO 等^[18]认为土壤质地与土壤结构对土壤含水 率有重要影响,是导致平均相对偏差最大值大于最

图 2 土壤含水率平均相对偏差等值线图

Fig. 2 Contour maps of mean relative difference of soil water content

小值绝对值的一个原因,因此,需进一步考虑黑土区 土壤结构及性质对土壤含水率平均相对偏差的影 响。

从图 3 可看出,较深土层(40~60 cm、60~80 cm) 土壤含水率平均相对偏差标准差的空间分布特征具 有较高的相似程度。不同土层土壤含水率平均相对 偏差标准差的波动幅度依次为 87.50%、42.19%、 34.70%、20.76%,波动幅度随土层深度的增加同样 减小。随土层深度增加,平均相对偏差及其标准差 的波动幅度都减小,表明土壤水分时间稳定性随土 层深度增加而增强,这与许多学者的研究结果一 致^[19-20]。

由表 2 可知,平均相对偏差与其标准差的相关 系数分别为-0.114、0.022、0.543、0.416,两者相关 性在 0~20 cm 和 20~40 cm 土层不显著,在 40~60 cm 和 60~80 cm 土层显著(0.01 水平)。ZHANG 等^[21] 发现平均相对偏差与其标准差有显著直线关系,朱 绪超等^[22]发现两者为二次曲线关系,不同学者得出 的研究结果有所差异,可能与土壤类型、土层深度、 覆盖植被、降雨和灌溉等因素不同有关。

基于式(2)和式(3)确定代表性测点的原则,反 映不同土层土壤最低含水率的代表性测点分别是测 点9、测点 36、测点 33、测点 10,反映最高含水率的 代表性测点分别是测点 64、测点 64、测点 9、测点 9, 反映平均含水率的代表性测点分别是测点 53、测点 35、测点 18、测点 64,反映最不稳定的代表性测点分 别是测点 14、测点 30、测点 22、测点 22,随土层深度 增加,土壤最低含水率、最高含水率、平均含水率和 最不稳定代表性测点均有所差异,主要是由于土层 深度不同,影响土壤水分的因素不同而导致的,有必 要对影响不同土层时间稳定性的因素进行深入研 究。利用代表性测点可确定研究区域土壤的最低含 水率、最高含水率和平均含水率等信息,为研究区土 壤水分的调控和管理提供理论依据与指导。

2.3 秸秆还田条件下土壤水分时间稳定性与玉米 穗质量的相关性分析

土壤水分是作物生长发育的一个重要因素,目 前关于土壤水分时间稳定性与作物关系的研究很 少。作物产量是反映作物生长状况的一个综合指 标,为此本文分析了时间稳定性与玉米穗粒质量、穗 轴质量的相互关系。由表3可知,单一尺度上,除 40~60 cm 土层平均相对偏差标准差与穗粒质量的 相关性在0.05 水平上显著外,其他土层平均相对偏 差标准差与穗粒质量、穗轴质量的相关性均不显著; 随土层深度增加,平均相对偏差标准差与穗粒质量、 穗轴质量的相关程度均未呈现规律性变化趋势。

Fig. 3 Contour maps of standard deviation of mean relative difference of soil water content

表 2 土壤含水率平均相对偏差与其标准差的相关系数 Tab. 2 Correlation coefficient between mean relative difference and standard deviation of soil water content

土层深度/cm	$0 \sim 20$	$20\sim 40$	$40\sim\!60$	$60\sim\!80$
相关系数	-0.114	0.022	0. 543 **	0. 416 **

注:**表示在p<0.01水平上显著,下同。

表 3 土壤含水率平均相对偏差标准差与玉米穗 质量在单一尺度上的相关系数

Tab. 3 Correlation coefficient between standard deviation of mean relative difference of soil water content and corn ear weight at single scale

	σ_{20}	σ_{40}	σ_{60}	σ_{80}
W_L	0.165	0.142	0. 255 *	0. 183
W_Z	0.140	0.125	0.217	0.125

注:*表示在p < 0.05水平上显著,下同; σ_{20} 、 σ_{40} 、 σ_{60} 、 σ_{80} 表示 0~20 cm、20~40 cm、40~60 cm、60~80 cm 土层土壤含水率平均相 对偏差标准差, W_L 、 W_Z 表示玉米穗粒质量和穗轴质量。

不同尺度上主要影响因素或同一因素的影响程 度不一定相同,单一尺度相关性分析不一定能完整 地揭示出研究对象之间的相互关系,多尺度相关性 分析能更深入地揭示研究对象之间的相互关系,在 这一方面已开展了许多研究^[23-25]。为此,利用联合 多重分形理论研究了土壤水分时间稳定性与玉米穗

粒质量、穗轴质量的多尺度相关性。图4和图5分 别为时间稳定性与穗粒质量、穗轴质量的联合多重 分形谱, α₂₀、α₄₀、α₆₀、α₈₀分别表示 0~20 cm、20~ 40 cm、40~60 cm、60~80 cm 土层平均相对偏差标 准差的联合奇异指数,β,β,分别表示穗粒质量、穗 轴质量的联合奇异指数。从图4和图5可以看出, 不同土层平均相对偏差标准差与穗粒质量、穗轴质 量的联合多重分形谱均有所差异。为量化时间稳定 性与穗粒质量、穗轴质量的多尺度相关性,计算了平 均相对偏差标准差与穗粒质量、穗轴质量联合奇异 指数的相关性(表4)。由表4可知,0~20 cm、20~ 40 cm 土层平均相对偏差标准差与穗粒质量联合奇 异指数的相关性不显著,40~60 cm、60~80 cm 土层 两者联合奇异指数的相关性分别在 0.01 和 0.05 水 平上显著,与单一尺度上得出的结论有所差异;不同 土层平均相对偏差标准差与穗轴质量联合奇异指数 的相关性均不显著,与单一尺度上得出的结论一致; 随土层深度增加,平均相对偏差标准差与穗粒质量、 穗轴质量联合奇异指数的相关程度均先增后降,与 单一尺度上得出的结论不同:除0~20 cm 土层平均 相对偏差标准差与穗轴质量的多尺度相关程度小于 单一尺度相关程度外,其他土层两者的多尺度相关

Joint multi-fractal spectra of standard deviation of mean relative difference of soil water content and grain weight per ear

Fig. 5 Joint multi-fractal spectra of standard deviation of mean relative difference of soil water content and axis weight per ear

表 4 土壤含水率平均相对偏差标准差与玉米穗质量 联合奇异指数的相关系数

Tab. 4 Correlation coefficient between joint singularity exponents for standard deviation of mean relative difference of soil water content and corn ear weight

	α_{20}	$lpha_{40}$	α_{60}	α_{80}
$oldsymbol{eta}_L$	0.192	0.257	0. 470 **	0. 321 *
β_Z	0.100	0.141	0.273	0.154

程度均大于单一尺度相关程度。基于土壤水分时间 稳定性与穗质量的多尺度相关特征,一方面能够深 入了解土壤水分对作物的影响机制,另一方面通过 合理的估算、管理与调控农田不同土层土壤水分,能 够促进作物产量的提高。

3 结论

(1)研究区土壤水分时间稳定性随着土层深度 增加而增强,且较深土层(40~60 cm、60~80 cm) 土壤水分时间稳定性的空间分布特征比较相似;0~20 cm、20~40 cm 土层土壤水分时间稳定性与土壤 含水率的相关性不显著,40~60 cm、60~80 cm 土层 土壤含水率较高的测点时间稳定性较强;土层深度 不同,土壤水分代表性测点有所差异,利用代表性测 点可确定研究区域土壤最低含水率、最高含水率和 平均含水率等信息,可为农田土壤水分估算与管理 提供理论依据。

(2)单一尺度和多尺度上,时间稳定性与穗轴 质量的相关程度均不显著,与穗粒质量相关程度的 显著性随土层深度不同有所差异,与穗粒质量、穗轴 质量的相关程度随土层深度的变化趋势不同;大部 分土层土壤水分时间稳定性与穗粒质量、穗轴质量 的多尺度相关程度均大于单一尺度相关程度。多尺 度分析能更深入确定时间稳定性与玉米穗质量的相 互关系,为进一步揭示土壤水分对作物的影响提供 理论依据。

参考文献

[1] 余坤, 冯浩, 李正鹏, 等. 秸秆还田对农田土壤水分与冬小麦耗水特征的影响[J/OL]. 农业机械学报, 2014, 45(10): 116-123.

YU Kun, FENG Hao, LI Zhengpeng, et al. Effects of different pretreated straw on soil water content and water consumption characteristics of winter wheat [J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(10):116 – 123. http://www.j-csam.org/jcsam/ch/reader/view_abstract.aspx? flag = 1&file_no = 20141019&journal_id = jcsam. DOI: 10.6041/j.issn.1000-1298.2014.10.019. (in Chinese)

[2] 汪可欣,付强,张中昊,等. 秸秆覆盖与表土耕作对东北黑土根区土壤环境的影响[J/OL]. 农业机械学报, 2016, 47(3):131-137.
 WANG Kexin, FU Qiang, ZHANG Zhonghao, et al. Effects of straw mulching mode and tillage methods on soil environment of

root zone in northeast black soil[J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(3):131 – 137. http://www.j-csam.org/jcsam/ch/reader/view_abstract.aspx? flag = 1&file_no = 20160319&journal_id = jcsam. DOI: 10.6041/j.issn.1000-1298.2016.03.019. (in Chinese)

[3] SU Wei, LU Jianwei, WANG Weini, et al. Influence of rice straw mulching on seed yield and nitrogen use efficiency of winter

Fig. 4

oilseed rape (Brassica napus L.) in intensive rice-oilseed rape cropping system[J]. Field Crops Research, 2014, 159(6):53-61.

- [4] VACHAUD G, PASSERAT DE SILANS A, BALABANIS P, et al. Temporal stability of spatially measured soil water probability density function [J]. Soil Science Society of America Journal, 1985, 49(4): 822-828.
- [5] 蔺鹏飞,朱喜,何志斌,等. 土壤水分时间稳定性研究进展[J]. 生态学报, 2018, 38(10): 3403-3413.
- LIN Pengfei, ZHU Xi, HE Zhibin, et al. Research progress on soil moisture temporal stability [J]. Acta Ecologica Sinica, 2018, 38(10): 3403-3413. (in Chinese)
- [6] 刘继龙,马孝义,张振华,等. 果园土壤水分时间稳定性研究[J]. 应用基础与工程科学学报, 2014, 22 (4):698-704. LIU Jilong, MA Xiaoyi, ZHANG Zhenhua, et al. Temporal stability of soil moisture in an orchard[J]. Journal of Basic Science and Engineering, 2014, 22(4): 698-704. (in Chinese)
- [7] 刘泽彬, 王彦辉, 徐丽宏, 等. 六盘山华北落叶松林坡面的土壤水分时间稳定性[J]. 水土保持学报, 2017, 31(1):153-159, 165.

LIU Zebin, WANG Yanhui, XU Lihong, et al. Temporal stability of soil moisture on a slope covered by *Larix principis-rupprechtii* plantation in Liupan Mountains [J]. Journal of Soil and Water Conservation, 2017, 31(1):153 – 159, 165. (in Chinese)

- [8] LI Danfeng, SHAO Ming'an. Temporal stability analysis for estimating spatial mean soil water storage and deep percolation in irrigated maize crops[J]. Agricultural Water Management, 2014, 144(2):140-149.
- [9] GAO Xiaodong, WU Pute, ZHAO Xining, et al. Estimating spatial mean soil water contents of sloping jujube orchards using temporal stability[J]. Agricultural Water Management, 2011, 102(1):66-73.
- [10] DUAN Liangxia, HUANG Mingbin, LI Zhenwei, et al. Estimation of spatial mean soil water storage using temporal stability at the hillslope scale in black locust (*Robinia pseudoacacia*) stands[J]. CATENA, 2017, 156: 51-61.
- [11] 白一茹,邵明安. 黄土高原雨养区坡面土壤蓄水量时间稳定性[J]. 农业工程学报, 2011, 27(7):45 50.
 BAI Yiru, SHAO Ming'an. Temporal stability of soil water storage on slope in rain-fed region of Loess Plateau [J]. Transactions of the CSAE, 2011, 27(7): 45 50. (in Chinese)
- WANG Tiejun. Modeling the impacts of soil hydraulic properties on temporal stability of soil moisture under a semi-arid climate
 [J]. Journal of Hydrology, 2014, 519:1214 1224.
- [13] SUR C Y, JUNG Y, CHOI M H. Temporal stability and variability of field scale soil moisture on mountainous hillslopes in Northeast Asia[J]. Geoderma, 2013, 207 – 208:234 – 243.
- [14] PEDRERA-PARRILLA A, PACHEPSKY Y A, TAGUAS E V, et al. Concurrent temporal stability of the apparent electrical conductivity and soil water content[J]. Journal of Hydrology, 2017, 544:319-326.
- [15] ZELEKE T B, SI B C. Scaling relationships between saturated hydraulic conductivity and soil physical properties [J]. Soil Science Society of America Journal, 2005, 69(6):1691-1702.
- [16] 高磊. 黄土高原小流域土壤水分时间稳定性及空间尺度性研究[D]. 杨凌:中国科学院研究生院, 2012.
 GAO Lei. Temporal stability and the spatial scaling of soil moisture in a small watershed on the Loess Plateau[D]. Yangling: Graduate School of Chinese Academy of Sciences, 2012. (in Chinese)
- [17] HU Wei, SHAO Ming'an, REICHARDT K. Using a new criterion to identify sites for mean soil water storage evaluation [J]. Soil Science Society of America Journal, 2010, 74:762 - 773.
- [18] ZHAO Y, PETH S, WANG X Y, et al. Controls of surface soil moisture spatial patterns and their temporal stability in a semiarid steppe[J]. Hydrological Processes, 2010, 24(18):2507 - 2519.
- [19] ZHU Xuchao, SHAO Ming'an, JIA Xiaoxu, et al. Application of temporal stability analysis in depth-scaling estimated soil water content by cosmic-ray neutron probe on the northern Tibetan Plateau [J]. Journal of Hydrology, 2017, 546:299 308.
- [20] 赵文举,李晓萍,范严伟,等.西北旱区压砂地土壤水分的时空分布特征[J].农业工程学报,2015,31(17):144-151. ZHAO Wenju, LI Xiaoping, FAN Yanwei, et al. Spatial-temporal stability distribution characteristics of soil moisture in gravel-sand mulched field in northwestern arid area[J]. Transactions of the CSAE, 2015, 31(17):144-151. (in Chinese)
- [21] ZHANG Pingping, SHAO Ming'an. Temporal stability of surface soil moisture in a desert area of northwestern China [J]. Journal of Hydrology, 2013, 505:91 - 101.
- [22] 朱绪超, 邵明安, 朱军涛, 等. 高寒草甸生态系统表层土壤水分时间稳定性研究[J/OL]. 农业机械学报, 2017, 48(8):212-218.

ZHU Xuchao, SHAO Ming'an, ZHU Juntao, et al. Temporal stability of surface soil moisture in alpine meadow ecosystem on northern Tibetan plateau[J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(8):212 - 218. http://www.j-csam.org/jcsam/ch/reader/view_abstract.aspx? flag = 1&file_no = 20170824&journal_id = jcsam. DOI:10. 6041/j.issn. 1000-1298.2017.08.024. (in Chinese)

[23] 刘继龙,周延,付强,等.黑土区玉米地作物信息多重分形与多尺度相关特征研究[J/OL]. 农业机械学报,2016, 47(6):163-170.

LIU Jilong, ZHOU Yan, FU Qiang, et al. Multifractal and multi-scale correlation characteristics of crop information of corn field in black soil region[J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(6):163 – 170. http://www.j-csam.org/jcsam/ch/reader/view_abstract.aspx? flag = 1&file_no = 20160621&journal_id = jcsam. DOI:10. 6041/j. issn. 1000-1298. 2016. 06. 021. (in Chinese)

- [24] BANERJEE S, HE Yuhong, GUO Xulin, et al. Spatial relationships between leaf area index and topographic factors in a semiarid grassland: joint multifractal analysis [J]. Australian Journal of Crop Science, 2011, 5(6):756-763.
- [25] LI Yi, LI Min, HORTON R. Single and joint multifractal analysis of soil particle size distributions [J]. Pedosphere, 2011, 21(1):75-83.