doi:10.6041/j.issn.1000-1298.2019.01.016

振刷式枸杞采收机设计与试验优化

陈 军 赵 健 陈 云 卜令昕 胡广锐 张恩宇 (西北农林科技大学机械与电子工程学院,陕西杨凌 712100)

摘要:为了实现枸杞机械采收的高效、低损,融合振动和梳刷原理,设计了一种便携振刷式枸杞采收机,同时,根据 枸杞鲜果与果柄脱离机理,采用单个集中质量力学模型,建立了采收机动力学模型,得到了采收机作用于枸杞鲜果 的接触点位移、速度和加速度方程。运用 ADAMS 对采收机进行了运动学与动力学仿真,仿真结果表明:梳刷转速 60~70 r/min、凸轮转速 25~35 r/min、梳刷样式 II 型时,熟果可以从果柄上脱离且不受损伤。采用三因素三水平二 次正交旋转组合试验,建立了熟果采收率、青果错采率、熟果破损率与梳刷转速、凸轮转速、梳刷样式之间的数学模 型,分析了各因素对熟果采收率、青果错采率、熟果破损率的影响,确定了最佳参数组合:梳刷转速 64.52 r/min、凸轮 转速 29.68 r/min、梳刷样式 II 型,并进行了田间试验验证。田间试验表明,熟果采收率为 89.12%,青果错采率为 5.87%,熟果破损率为 6.24%。

关键词: 枸杞; 收获; 振动式; 梳刷式; 响应面法; 参数优化 中图分类号: S225.93 文献标识码: A 文章编号: 1000-1298(2019)01-0152-10

Design and Experiment on Vibrating and Comb Brushing Harvester for *Lycium barbarum*

CHEN Jun ZHAO Jian CHEN Yun BU Lingxin HU Guangrui ZHANG Enyu (College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China)

Abstract: Nowadays, the manual harvesting is the most common harvesting method of Lycium barbarum (L. barbarum), but the efficiency of the manual harvesting is low and the cost of that is high. In order to achieve the goal of high efficiency and low damage of the mechanical harvesting of L. barbarum, a portable vibrating and comb brushing harvester for L. barbarum based on the principle of vibrating and comb brushing was designed. Based on the separation principle of L. barbarum and the carpopodium, the mechanical model was adopted by single centralized mass method to establish the dynamic model of the harvester and the equations of the displacement, velocity and acceleration of contact point of ripe L. barbarum applied load by the harvester were obtained. In order to optimize the structure and working parameters of the harvester, the kinematics and dynamics simulation of the harvester was done through ADAMS. Results showed that the combination that the revolving speed of comb brush was 60 ~ 70 r/min, the revolving speed of cam was $25 \sim 35$ r/min and the style of comb brush was II, which was helpful to harvest L. barbarum. Three factors and three levels quadratic orthogonal revolving experiment was adopted to establish the mathematical model between the harvesting rate of ripe L. barbarum, harvesting rate of unripe L. barbarum, damage rate of ripe L. barbarum and revolving speed of comb brush, revolving speed of cam and style of comb brush. The influences of various factors on the harvesting rate of ripe L. barbarum, the harvesting rate of unripe L. barbarum and the damage rate of ripe L. barbarum were analyzed and the best combination was determined as the revolving speed of comb brush was 64.52 r/min, the revolving speed of cam was 29.68 r/min and the style of comb brush was II. Field experiment results showed that the harvesting rate of ripe L. barbarum was 89. 12%, the harvesting rate of unripe L. barbarum was 5.87% and the damage rate of ripe L. barbarum was 6.24%. The research result provided a design basis for the later research of vibrating and comb brushing harvester for L. barbarum.

Key words: L. barbarum; harvest; vibrating; comb brushing; response surface method; parameters optimization

收稿日期: 2018-08-05 修回日期: 2018-09-27

基金项目:宁夏回族自治区重点研发计划项目(nxzdkjxm2016-04-02)和国家重点研发计划项目(2017YFD0700402-2)

作者简介:陈军(1970—),男,教授,博士生导师,主要从事智能化农业装备技术及车辆性能检测研究,E-mail: chenjun_jdxy@nwsuaf.edu. cn

0 引言

传统的枸杞采收以人工采收为主^[1],采收速度 慢,劳动力需求量大,使枸杞生产成本居高不下。随 着枸杞种植面积的增大,枸杞采收问题已成为制约 枸杞产业持续健康发展的瓶颈^[2]。因此,需要研发 一种高效低损的枸杞采收机^[3]。

在国外, SO^[4-5]设计了一种枸杞振动采收装 置,采收效率是人工采收的4.2倍,但是由于该装置 是根据韩国枸杞生物力学特性设计的,并不适用于 宁夏枸杞的机械化采收。枸杞在国外种植分布较 少,但美国等国家针对蓝莓、黑莓、樱桃等浆果类果 实采收机的相关成果值得借鉴[6-9]。在国内,根据 采收原理的不同,枸杞采收机的类型主要有振动式、 梳刷式、剪切式和气流式。张最等^[10]建立了枸杞振 动采摘力学模型并设计了一种自走式枸杞采摘机: 周兵等[11]设计了一种模拟手枸杞采摘机:徐丽明 等^[2]设计了一种大型梳刷振动式枸杞收获装置:张 文强等[12-13]设计了一种振摇枸杞采收机和一种变 间距梳刷式枸杞采收装置;赵健等^[14]设计了一种便 携式枸杞振动采收装置。由不同类型枸杞采收机的 田间试验可知,振动式效率高、损伤大;剪切式和梳 刷式损伤小、效率低:气流式效率低、气源供应稳定 性差。因此,将振动和梳刷两种形式融合是解决构 杞机械采收高效、低损的优选方法。同时,现阶段构 杞种植模式尚未标准化,导致大型机械田间通过性 差,便携式枸杞采收机是目前解决枸杞机械采收的 适宜方法。

本文融合振动和梳刷原理设计一种便携振刷 式枸杞采收机,同时,根据枸杞鲜果与果柄脱离机 理,采用单个集中质量力学模型建立采收机动力 学模型,运用 ADAMS 对采收机进行运动学与动力 学仿真,得到各参数的取值范围。在此基础上,开 展田间试验,优化振刷式枸杞采收机结构与工作 参数。

1 总体方案

1.1 结构与工作原理

振刷式枸杞采收机结构如图 1 所示,主要由 振动系统、梳刷系统、回位系统及控制系统 4 部 分组成。振动系统主要包括凸轮、轴、联轴器、电 机 I 等,梳刷系统主要包括梳刷、齿轮传动系、电 机 II、从动件等,回位系统主要包括滑块、导轨、 回位弹簧等,控制系统主要包括电机 I 电源、电 机 II 电源、电机 I 调速器、电机 II 调速器等。工 作时,手持机架外壳手柄,将挂果枝条置于两梳 刷间,启动采收机,电机 I 转速由电机 I 调速器 调节,电机 I 带动凸轮转动,从动件受迫振动,其 在最远行程处受到回位弹簧作用作往复直线运 动,电机 II 在电机 II 调速器的控制下通过齿轮传 动系带动梳刷转动,当对枸杞鲜果的作用力大于 枸杞鲜果与果柄的结合力时,枸杞鲜果与果柄脱 离,靠自身重力下落并沿从动件中斜槽滑入到收 集箱中,采收机继续沿挂果枝条移动,从而完成 枸杞振刷采收。

图 1 振刷式枸杞采收机结构示意图

Fig. 1 Structure diagram of vibrating and comb

brushing harvester for *L. barbarum* 1. 轴 2. 回位弹簧 3. 凸轮 4. 梳刷 5. 联轴器 6. 电机 I 支 架 7. 电机 I 调速器 8. 电机 I 9. 电机 I 电源 10. 电机 II 调 速器 11. 电机 II 电源 12. 电机 II 13. 齿轮传动系 14. 收集

箱 15. 从动件 16. 滑块 17. 导轨 18. 机架

1.2 动力学模型

如图 2 所示,当枸杞鲜果与梳刷接触时,枸杞鲜 果受到重力 G、梳刷转动对其的垂直向下作用力 P 和从动件因凸轮转动产生的振动对其的水平作用力 T 这 3 个力的作用^[15-17]。在 3 个力的作用下,枸杞 鲜果对果柄有水平切和垂直拉的作用效果,当合力 大于枸杞鲜果与果柄的结合力时,枸杞鲜果与果柄 脱离^[18-21]。

为了保证采收机对枸杞鲜果的作用力大于枸杞

图 2 枸杞鲜果受力分析图 Fig. 2 Diagram of force analysis of *L. barbarum*

鲜果与果柄的结合力,须建立采收机动力学模型。 由于回位弹簧水平安装,从动件等平移物体只存在 横向变形,故采用单个集中质量力学模型^[22]。由达 朗贝尔原理可知,整体的外力(矩)与惯性力(矩)处 于平衡状态,即

$$\begin{cases} \sum F = 0\\ \sum M = 0 \end{cases}$$
(1)

式中 F----惯性力,N

在不计摩擦力的情况下,凸轮机构动力学方程

$$\omega^2 = \frac{\kappa_1 + \kappa_2}{m} \tag{3}$$

$$s_2 = s_2(\theta_1) \tag{4}$$

$$\theta_1 = \omega_1 t \tag{5}$$

式中 ω ——凸轮机构自然圆频率, rad/s

$$$\theta_1 \longrightarrow \Delta \widehat{v} \widehat{s} \widehat{h}, (\circ)$
 $\omega_1 \longrightarrow \Delta \widehat{v} \widehat{h} \overline{x} \widehat{g}, \operatorname{rad/s}$
 $t \longrightarrow \overline{v} \widehat{n} \widehat{n}, s$
将式(3)、(4)代入式(2),得$$

$$\ddot{s}_1 + \omega^2 s_1 = \frac{k_1}{m} s_2(\theta_1) \tag{6}$$

对于从动件运动规律是余弦加速度型的,从动 件输入位移为

$$s_2(\theta_1) = \frac{h}{2} \left(1 - \cos\left(\frac{\pi}{\theta_0}\theta_1\right) \right)$$
(7)

式中 h——从动件升程,m

 θ_0 ——达到升程时凸轮的转角,(°)

将式(7)代入式(6),得从动件运动规律是余弦 加速度型的凸轮机构动力学方程为

$$\ddot{s}_1 + \omega^2 s_1 = \frac{hk_1}{2m} \left(1 - \cos\left(\frac{\pi}{\theta_0}\theta_1\right) \right)$$
(8)

此方程的全解为

$$s_{1} = A\cos\left(\frac{\omega}{\omega_{1}}\theta_{1}\right) + B\sin\left(\frac{\omega}{\omega_{1}}\theta_{1}\right) + \frac{hk_{1}}{2m\omega}\left[1 - \frac{1}{1 - \left(\frac{\pi\omega_{1}}{\theta_{0}\omega}\right)^{2}}\cos\left(\frac{\pi}{\theta_{0}}\theta_{1}\right)\right]$$
(9)

在初始条件 $\theta_1 = 0, s_1 = 0, \dot{s}_1 = 0$ 时,有

$$\begin{cases} A = \frac{hk_1}{2m\omega^2} \left[\frac{1}{1 - \left(\frac{\pi\omega_1}{\theta_0\omega}\right)^2} - 1 \right] \\ B = 0 \end{cases}$$
(10)

此时方程的解为

$$s_{1} = \frac{hk_{1}}{2m\omega^{2}} \left[\frac{1}{1 - \left(\frac{\pi\omega_{1}}{\theta_{0}\omega}\right)^{2}} - 1 \right] \cos\left(\frac{\omega}{\omega_{1}}\theta_{1}\right) + \frac{hk_{1}}{2m\omega^{2}} \left[1 - \frac{1}{1 - \left(\frac{\pi\omega_{1}}{\theta_{0}\omega}\right)^{2}} \cos\left(\frac{\pi}{\theta_{0}}\theta_{1}\right) \right] \quad (11)$$

由于梳刷是匀速圆周运动,其运动学方程为
$$s_3 = \omega_2 Rt$$
 (12)
式中 s_3 ——梳刷输出位移,m
 ω_2 ——梳刷角速度,rad/s

因此,采收机作用于枸杞鲜果的接触点运动学 方程为

$$s_{4} = \frac{hk_{1}}{2m\omega^{2}} \left[\frac{1}{1 - \left(\frac{\pi\omega_{1}}{\theta_{0}\omega}\right)^{2}} - 1 \right] \cos\left(\frac{\omega}{\omega_{1}}\theta_{1}\right) + \frac{hk_{1}}{2m\omega^{2}} \left[1 - \frac{1}{1 - \left(\frac{\pi\omega_{1}}{\theta_{0}\omega}\right)^{2}} \cos\left(\frac{\pi}{\theta_{0}}\theta_{1}\right) \right] + \omega_{2}Rt$$
(13)

$$v_4 = \frac{\mathrm{d}s_4}{\mathrm{d}t} = \frac{-hk_1}{2m\omega} \left[\frac{1}{1 - \left(\frac{\pi\omega_1}{\theta_0\omega}\right)^2} - 1 \right] \sin(\omega t) +$$

$$\frac{\pi\omega_1 hk_1}{2m\theta_0 \omega^2} \left\lfloor \frac{1}{1 - \left(\frac{\pi\omega_1}{\theta_0 \omega}\right)^2} \sin\left(\frac{\pi\omega_1}{\theta_0}t\right) \right\rfloor + \omega_2 R \qquad (14)$$

$$a_{4} = \frac{\mathrm{d}v_{4}}{\mathrm{d}t} = \frac{-hk_{1}}{2m} \left[\frac{1}{1 - \left(\frac{\pi\omega_{1}}{\theta_{0}\omega}\right)^{2}} - 1 \right] \cos(\omega t) + \frac{\pi^{2}\omega_{1}^{2}hk_{1}}{1 - \left(\frac{\pi\omega_{1}}{\theta_{0}\omega}\right)^{2}} - 1 \left[\cos(\omega t) + \frac{\pi^{2}\omega_{1}^{2}hk_{1}}{1 - \left(\frac{\pi\omega_{1}}{\theta_{0}\omega}\right)^{2}} - 1 \right] \cos(\omega t) + \frac{\pi^{2}\omega_{1}^{2}hk_{1}}{1 - \left(\frac{\pi\omega_{1}}{\theta_{0}\omega}\right)^{2}} - 1 \left[\cos(\omega t) + \frac{\pi^{2}\omega_{1}^{2}hk_{1}}{1 - \left(\frac{\pi\omega_{1}}{\theta_{0}\omega}\right)^{2}} - 1 \right] \cos(\omega t) + \frac{\pi^{2}\omega_{1}^{2}hk_{1}}{1 - \left(\frac{\pi\omega_{1}}{\theta_{0}\omega}\right)^{2}} - 1 \left[\cos(\omega t) + \frac{\pi^{2}\omega_{1}^{2}hk_{1}}{1 - \left(\frac{\pi\omega_{1}}{\theta_{0}\omega}\right)^{2}} - 1 \right] \cos(\omega t) + \frac{\pi^{2}\omega_{1}^{2}hk_{1}}{1 - \left(\frac{\pi\omega_{1}}{\theta_{0}\omega}\right)^{2}} - 1 \left[\cos(\omega t) + \frac{\pi^{2}\omega_{1}^{2}hk_{1}}{1 - \left(\frac{\pi\omega_{1}}{\theta_{0}\omega}\right)^{2}} - 1 \right] \cos(\omega t) + \frac{\pi^{2}\omega_{1}^{2}hk_{1}}{1 - \left(\frac{\pi\omega_{1}}{\theta_{0}\omega}\right)^{2}} - 1 \left[\cos(\omega t) + \frac{\pi^{2}\omega_{1}^{2}hk_{1}}{1 - \left(\frac{\pi\omega_{1}}{\theta_{0}\omega}\right)^{2}} - 1 \right] \left[\cos(\omega t) + \frac{\pi^{2}\omega_{1}^{2}hk_{1}}{1 - \left(\frac{\pi\omega_{1}}{\theta_{0}\omega}\right)^{2}} - 1 \right] \left[\cos(\omega t) + \frac{\pi^{2}\omega_{1}^{2}hk_{1}}{1 - \left(\frac{\pi\omega_{1}}{\theta_{0}\omega}\right)^{2}} - 1 \right] \left[\cos(\omega t) + \frac{\pi^{2}\omega_{1}^{2}hk_{1}}{1 - \left(\frac{\pi\omega_{1}}{\theta_{0}\omega}\right)^{2}} - 1 \right] \left[-\frac{\pi^{2}\omega_{1}}{1 - \left(\frac{\pi\omega_{1}}{\theta_{0}\omega}\right)^{2}} - 1 \right] \left[-\frac{\pi^{2}\omega_{1}^{2}hk_{1}}{1 - \left(\frac{\pi\omega_{1}}{\theta_{0}\omega}\right)^{2}} - 1 \right] \left[-\frac{\pi^{2}\omega_{1}}{1 - \left(\frac{\pi\omega_{1}}{\theta_{0}\omega}\right)^{2}} - 1 \right] \left[$$

$$-\frac{\pi \omega_1 h k_1}{2m\theta_0^2 \omega^2} \left[\frac{1}{1 - \left(\frac{\pi \omega_1}{\theta_0 \omega}\right)^2} \cos\left(\frac{\pi \omega_1}{\theta_0} t\right) \right] \quad (15)$$

式中
$$s_4$$
——采收机输出位移,m
 v_4 ——采收机输出速度,m/s
 a_4 ——采收机输出加速度,m/s²

2 主要系统设计

2.1 振动系统

振动源主要来自凸轮转动与从动件碰撞产生的

为

振动,凸轮设计尤为重要。从动件等平移物体总质量0.7 kg,凸轮对从动件的作用力为

$$W = \frac{N}{\cos(\alpha + \varphi_1) - \left(1 + \frac{2b}{l}\right)\sin(\alpha + \varphi_1)\tan\varphi_2}$$
(16)

在凸轮机构中,压力角 α 是一个重要参数,若 压力角 α 过大,机构将发生自锁,此时压力角称临 界压力角^[23],其值为

$$\alpha_{c} = \arctan\left(\frac{1}{\left(1 + \frac{2b}{l}\right)\tan\varphi_{2}}\right) - \varphi_{1} \qquad (17)$$

式中 α_c ——临界压力角,(°)

在推程时,直动推杆类型凸轮机构通常取许用 压力角[α] = 30°,在回程时,对于力封闭的凸轮机 构,由于这时使从动件运动的是封闭力,不存在自锁 的问题,[α] = 70°,同时,由于凸轮机构为中低速重载, 其运动规律选择余弦加速度型,推程时运动学方程为

$$\begin{cases} s_2 = \frac{h}{2} \left(1 - \cos \frac{\pi \theta_1}{\theta_0} \right) \\ v_2 = \frac{\pi h \omega_1 \sin \frac{\pi \theta_1}{\theta_0}}{2\theta_0} \\ a_2 = \frac{\pi^2 h \omega_1^2 \cos \frac{\pi \theta_1}{\theta_0}}{2\theta_0^2} \end{cases}$$
(18)

回程时运动学方程为

$$\begin{cases} s_2 = \frac{h\left(1 + \cos\frac{\pi\theta_1}{\theta_0}\right)}{2} \\ v_2 = \frac{-\pi h\omega_1 \sin\frac{\pi\theta_1}{\theta_0}}{2\theta_0} \end{cases}$$
(19)

$$a_2 = \frac{-\pi^2 h \omega_1^2 \cos \frac{\pi \theta_1}{\theta_0}}{2\theta_0^2}$$

2.2 梳刷系统

梳刷系统的传动部分中关键是齿轮传动系的设

计,分度圆上的压力角为

$$\beta = \arccos \frac{r_b}{r} \tag{20}$$

式中 β——分度圆上的压力角,(°) r_b——渐开线基圆半径,mm r——分度圆半径,mm

在主动齿轮的设计中,β取标准值 20°,从动齿 轮根据主动齿轮参数确定,齿轮传动系运动简图如 图 3 所示。

表1	凸轮设计参数

Tab.1 Design parameters of cam

	参数	数值/形式
基圆半径/mm		50
孔半径/mm		4
凸轮厚度/mm		20
	升程/mm	20
推程	角度/(°)	120
	从动件运动规律	余弦加速度
	升程/mm	0
远休止	角度/(°)	60
	从动件运动规律	停止
	升程/mm	- 20
回程	角度/(°)	120
	从动件运动规律	余弦加速度
	升程/mm	0
近休止	角度/(°)	60
	从动件运动规律	停止

图 3 齿轮传动系运动简图

Fig. 3 Diagram of movement of gear system

梳刷作为采收机末端执行关键部件,直接影响 枸杞综合采收效果,经前期预试验可知,如图4所示 的3种样式效果较为理想,材料采用硅酸凝胶,齿高 11 mm,每圈齿数8个,其中,Ⅰ型梳刷为斜齿、Ⅱ型 梳刷为直齿、Ⅲ型梳刷为人字齿。

2.3 回位系统

从动件等平移物体在运动过程中受到阻尼介质 的阻力 K 的作用,其方向与运动方向相反,当运动 速度不大时,其大小与从动件等平移物体运动的速 度成正比,设比例系数为μ,则有

$$K = -\mu \frac{\mathrm{d}s_1}{\mathrm{d}t} \tag{21}$$

Fig. 4 Styles of comb brush

由胡克定律可知,弹簧使从动件等平移物体回 到平衡位置的弹性恢复力f与从动件等平移物体离 开平衡位置的距离成正比,即

$$f = -cs_1 \tag{22}$$

式中 c----弹簧的弹性系数

由牛顿第二定律得

$$m \frac{d^2 s_1}{d^2 t} = -c s_1 - \mu \frac{d s_1}{d t}$$
(23)

因此,回位弹簧采用4个8.73×46.8标准弹簧,分别安装在从动件4个顶点处,滑块采用 HGW20CC型法兰滑块,导轨采用HGR20×100标 准导轨。

2.4 控制系统

采收机控制系统电路图如图 5 所示,电机 I 采 用 JS-42GA775 型 DC24V 直流减速电机,额定转速 600 r/min,由 DC-24120 型大容量锂聚合物电池供 电,电机 I 调速器采用 JS 直流正反调速板,电机 Ⅱ 采用 XD - 37GB520 型直流减速电机,由 BT -12M4.5AC 型直流电源供电,电机 Ⅱ 调速器采用 TELESKY 调速板。

3 运动学与动力学仿真分析

3.1 运动学仿真分析

在 ADAMS/View 环境下对梳刷进行柔性化,梳

刷柔性化参数如表2所示。

在此环境下对采收机进行运动学仿真,运动学 仿真设计如表3所示。

在 ADAMS/PostProcessor 环境下,在采收机作用 于枸杞鲜果的接触点添加 1 个测量点^[24-25],用以测 量采收机作用于枸杞鲜果的接触点位移、速度、加速 度,由前期枸杞力学特性试验可知,熟果与果柄结合 力为 0.64 ~ 1.38 N,青果与果柄结合力为 2.21 ~ 3.59 N,仿真结果表明: 梳刷转速 60 ~ 70 r/min、凸 轮转速 25 ~ 35 r/min、梳刷样式 II 型时满足上述条 件。通过进一步分析可知, 熟果破损力为 2.56 ~ 3.89 N,在此条件下,当梳刷转速 65 r/min、凸轮转 速 30 r/min、梳刷样式 II 型时枸杞综合采收效果较 好,此时接触点位移、速度、加速度如图 6 所示。

3.2 动力学仿真分析

在 ADAMS/View 环境下对枸杞鲜果进行柔性 化,枸杞鲜果柔性化参数如表4 所示。

在此环境下对采收机进行动力学仿真,在梳刷 与枸杞鲜果间添加1个接触力,在 ADAMS/ PostProcessor环境下,得到上述测量点碰撞力即采 收机作用于枸杞鲜果时的接触力如图6所示,可 知此接触力大于熟果与果柄的结合力,并且小于 熟果破损力,因此可以使熟果从果柄上脱离且不 受损伤。

Fig. 5 Circuit diagram of control system of harvester

Tab. 2 Flexibility p	arameters of comb brush
参数	数值
密度/(kg·mm ⁻³)	6. 7 × 10 $^{-7}$
弹性模量/MPa	6. 11
泊松比	0.49

表 3 运动学仿真设计

Tab. 3 Design of kinematics simulation

类型	物体	作用点	方向
转动副	凸轮与机架	凸轮轴心	垂直于工作网格
转动副	梳刷与从动件	梳刷轴心	垂直于工作网格
移动副	滑块与导轨	滑块中心	水平运动方向
单元素力	从动件	从动件4个顶点	水平运动方向
接触力	从动件与凸轮		
转动副驱动	凸轮与机架	凸轮轴心	垂直于工作网格
转动副驱动	梳刷与从动件	梳刷轴心	垂直于工作网格

4 采收机性能试验

4.1 材料与方法

采用生长状况良好、果实较多、无病虫害、无明显缺陷的宁杞7号为试验品种,树龄为4~5年,枸杞树经人工修剪后高0.6~1.4m,种植行距为3m,株距为1m。本次试验所用的主要仪器有:由西北农林科技大学机械与电子工程学院研制的振刷式枸杞采收机、AIRAJ型卷尺、华谊 PM6612L 型数字LED 照度计、欣宝 DT2236B 型转速/线速表、天福PC2810 型秒表计时器。

振刷式枸杞采收机主要是将熟果尽快从果柄上 脱离,保证其尽可能完好,同时尽可能减少青果脱 落。本次采收机性能试验以考察枸杞综合采收效果 为主要目的,采收过程中熟果采收率直接影响采收

Fig. 6 Changing curves of displacement, velocity, acceleration and force of contact point

表4 枸杞鲜果柔性化参数

Tab. 4	Flexibility	parameters	of ripe L.	barbarum
--------	-------------	------------	------------	----------

参数	数值
密度/(kg·mm ⁻³)	8. 4 $\times 10^{-7}$
弹性模量/MPa	0.5
泊松比	0.35

效果,同时采收过程中对青果的错采和熟果的损坏 直接影响枸杞总产量及经济效益,因此,选取熟果采 收率 Y₁、青果错采率 Y₂、熟果破损率 Y₃作为本次采 收机性能试验的3个指标,其计算公式为

$$Y_1 = \frac{n_1}{n_1 + n_2} \times 100\% \tag{24}$$

$$Y_2 = \frac{n_3}{n_3 + n_4} \times 100\% \tag{25}$$

$$Y_3 = \frac{n_5}{n_1} \times 100\% \tag{26}$$

式中 n₁——已采枸杞熟果数量,个 n₂——漏采枸杞熟果数量,个 n₃——已采枸杞青果数量,个 n₄——未采枸杞青果数量,个

n₅——已采枸杞熟果破损数量,个

试验时间为2018 年 6 月 27 日,试验地点为宁 夏回族自治区中卫市中宁县(7°32′48.2″N, 105°40′25.9″E),气温25.6℃,相对湿度29.8%,光 照强度418.9 Lx。通过前述原理分析和查阅文献资 料,确定影响采收机性能的主要因素有梳刷转速、凸 轮转速、梳刷样式等。由前期预试验及前述仿真分析, 确定各因素取值范围:梳刷转速为60~70 r/min,凸轮 转速为25~35 r/min,梳刷样式为 I 型、II 型、II 型、 为方便后续计算, I 型、II 型、II 型、II 型、II 型、II 型、 满速器调节并由欣宝 DT2236B 型转速/线速表测 量,梳刷样式通过更换梳刷改变。考虑到采收效率, 本次试验每组采收时间为5 s,由天福 PC2810 型秒 表计时器计时。

试验采用三因素三水平二次正交旋转组合试 验^[26],因素编码如表5所示,试验方案及结果如表6 (X_1,X_2,X_3) 为因素编码值)所示,共进行17组试验, 每组试验进行5次,取5次试验结果的平均值作为 该组试验结果。试验方案设计及结果分析应用 Design-Expert 8.0.6软件完成。

	1 a	Codes of factors	
		因素	
编码	梳刷转速/	凸轮转速/	按团长于
	$(r \cdot min^{-1})$	(r•min ⁻¹)	伽刚件式
- 1	60	25	1
0	65	30	2
1	70	35	3

表 5 因素编码 Tab 5 Codes of factors

4.2 结果与分析

4.2.1 试验结果回归分析

经 Design-Expert 8.0.6 软件分析,得到以熟果 采收率为响应函数、以各因素编码值为自变量的回 归数学模型为

$$Y_{1} = 90.\ 48 + 0.\ 44X_{1} + 0.\ 63X_{2} + 0.\ 73X_{3} + 0.\ 19X_{1}X_{2} - 0.\ 05X_{1}X_{3} + 0.\ 07X_{2}X_{3} - 1.\ 55X_{1}^{2} - 0.\ 75X_{2}^{2} - 1.\ 12X_{3}^{2}$$
(27)

对熟果采收率进行方差分析,如表 7 所示。结果显示:熟果采收率回归模型p = 0.001 < 0.05,说明该模型具有统计学意义;因子 $X_1 \ X_2 \ X_3 \ X_1^2 \ X_2^2 \ X_3^2$ 显著,其他因子不显著;失拟项 p = 0.0884 > 0.05,说明方程拟合得好,无失拟因素存在。

表6 试验方案及结果

Tab. 6 Experiment schemes and results

试验	梳刷转	凸轮转	梳刷样	熟果采收	青果错采	熟果破损
序号	速 X_1	速 X_2	式 X_3	率 $Y_1/\%$	率 $Y_2/\%$	率 $Y_3/\%$
1	- 1	- 1	0	87.56	6.03	6.82
2	1	- 1	0	87.32	6.95	7.84
3	- 1	1	0	88.64	7.09	7.09
4	1	1	0	89.18	8.06	8.22
5	- 1	0	- 1	86.33	6.35	6.91
6	1	0	- 1	88.02	7.15	7.63
7	- 1	0	1	87.69	7.63	7.21
8	1	0	1	89.18	8.41	8.09
9	0	- 1	- 1	87.33	6.28	6.85
10	0	1	- 1	88.23	7.36	7.28
11	0	- 1	1	88.84	7.08	7.36
12	0	1	1	90.02	9.81	7.98
13	0	0	0	90.32	5.62	5.81
14	0	0	0	90.53	5.16	5.36
15	0	0	0	90.82	5.32	5.91
16	0	0	0	90.66	5.19	5.56
17	0	0	0	90.06	5.75	6.03

表7 熟果采收率方差分析

Tab.7 Variance analysis of harvesting rate of ripe

L. barbarum					
方差来源	平方和	自由度	均方差	F	р
模型	28.76	9	3.20	14.36	0.0010
X_1	1.51	1	1.51	6.80	0.0350
X_2	3.15	1	3.15	14.15	0.0071
X_3	4.23	1	4.23	19.03	0.0033
$X_1 X_2$	0.15	1	0.15	0.68	0.4357
$X_1 X_3$	0.01	1	0.01	0.045	0.8382
$X_2 X_3$	0.02	1	0.02	0.088	0.7753
X_{1}^{2}	10.14	1	10.14	45.54	0.0003
X_{2}^{2}	2.38	1	2.38	10. 69	0.0137
X_{3}^{2}	5.30	1	5.30	23.80	0.0018
失拟项	1.21	3	0.40	4.56	0.0884
纯误差	0.35	4	0.088		
总和	30.32	16			

同上,得到以青果错采率为响应函数、以各因素 编码值为自变量的回归数学模型为

 $Y_2 = 5.41 + 0.43X_1 + 0.75X_2 + 0.72X_3 +$

 $0.\ 012X_1X_2 - 0.\ 005X_1X_3 + 0.\ 41X_2X_3 +$

0.69X₁²+0.94X₂²+1.29X₃² (28) 对青果错采率进行方差分析,如表 8 所示。结果 显示:青果错采率回归模型 p = 0.0001 < 0.05,说明该 模型具有统计学意义;因子 $X_1 \ X_2 \ X_3 \ X_2 X_3 \ X_1^2 \ X_2^2 \ X_3^2$ 显著,其他因子不显著;失拟项 p = 0.2610 > 0.05。

表 8 青果错采率方差分析

Tab. 8 Variance analysis of harvesting rate of unripe

L. barbarum					
方差来源	平方和	自由度	均方差	F	р
模型	24.89	9	2.77	28.05	0.0001
X_1	1.51	1	1.51	15.27	0.0058
X_2	4.47	1	4.47	45.35	0.0003
X_3	4.19	1	4.19	42. 52	0.0003
$X_1 X_2$	0.0006	1	0.0006	0.0063	0. 938 8
$X_1 X_3$	0.0001	1	0.0001	0.0010	0.9755
X_2X_3	0.68	1	0.68	6.91	0.0340
X_{1}^{2}	2.00	1	2.00	20. 25	0.0028
X_{2}^{2}	3.69	1	3.69	37.43	0.0005
X_{3}^{2}	6.99	1	6.99	70.93	< 0. 000 1
失拟项	0.41	3	0.14	1.97	0. 261 0
纯误差	0.28	4	0.070		
总和	25.57	16			

同上,得到以熟果破损率为响应函数、以各因素 编码值为自变量的回归数学模型为

 $Y_3 = 5.73 + 0.47X_1 + 0.21X_2 + 0.25X_3 +$

 $0.\ 027 X_1 X_2 + 0.\ 04 X_1 X_3 + 0.\ 047 X_2 X_3 + \\$

0.93 X_1^2 + 0.83 X_2^2 + 0.8 X_3^2 (29) 对熟果破损率进行方差分析,如表9所示。结 果显示:熟果破损率回归模型p = 0.0001 < 0.05,说 明该模型具有统计学意义;因子 X_1 、 X_2 、 X_3 、 X_1^2 、 X_2^2 、 X_3^2 显著,其他因子不显著;失拟项p = 0.7759 > 0.05。

	表 9	熟果破损率方差分析
Tab. 9	Varianc	e analysis of damage rate of ripe

	•	8	
L	barbarum		

方差来源	平方和	自由度	均方差	F	р
模型	12.93	9	1.44	26.63	0.0001
X_1	1.76	1	1.76	32.58	0.0007
X_2	0.36	1	0.36	6.70	0.0361
X_3	0. 49	1	0.49	8.99	0.0200
$X_1 X_2$	0.0030	1	0.003 0	0.056	0.8196
$X_1 X_3$	0.0064	1	0.0064	0.12	0.7406
X_2X_3	0.0090	1	0.0090	0.17	0. 694 8
X_{1}^{2}	3.61	1	3.61	66.85	< 0.0001
X_2^2	2.92	1	2.92	54.16	0.0002
X_{3}^{2}	2.70	1	2.70	50.01	0.0002
失拟项	0.083	3	0.028	0.38	0. 775 9
纯误差	0. 29	4	0.074		
总和	13.31	16			

4.2.2 试验结果响应曲面分析

应用响应曲面法分析各因素对熟果采收率的影 响,作出熟果采收率回归方程的响应曲面如图 7 所 示。由式(27)和表 7 可知,在各因素中,梳刷样式 对熟果采收率影响最大,其次是凸轮转速,最小是梳 刷转速,各因素交互作用影响不显著。如图 7a 所 示,随着梳刷转速的提高,熟果采收率先快速增大, 后缓慢减小。如图 7b 所示,梳刷样式为 II 型时,熟 果采收率较大,其次是 III 型,最小是 I 型。如图 7c 所示,随着凸轮转速的提高,熟果采收率先快速增 大,后缓慢减小。

应用响应曲面法分析各因素对青果错采率的影 响,作出青果错采率回归方程的响应曲面如图 8 所 示。由式(28)和表 8 可知,在各因素中,凸轮转速 和梳刷样式对青果错采率影响最大,最小是梳刷转 速,凸轮转速和梳刷样式交互作用影响显著。如 图 8a 所示,随着梳刷转速的提高,青果错采率先缓 慢减小,后快速增大。如图 8b 所示,梳刷样式为 II 型时,青果错采率较小,其次是 I 型,最大是 III 型。 如图 8c 所示,随着凸轮转速的提高,青果错采率先 缓慢减小,后快速增大。

应用响应曲面法分析各因素对熟果破损率的影 响,作出熟果破损率回归方程的响应曲面如图9所 示。由式(29)和表9可知,在各因素中,梳刷转速 对熟果破损率影响最大,其次是梳刷样式,最小是凸 轮转速,各因素交互作用影响不显著。如图9a所 示,随着梳刷转速的提高,熟果破损率先缓慢减小, 后快速增大。如图9b所示,梳刷样式为Ⅱ型时,熟 果破损率较小,其次是Ⅰ型,最大是Ⅲ型。如图9c 所示,随着凸轮转速的提高,熟果破损率先快速减 小,后快速增大。

采用 Design-Expert 8.0.6 软件获得各因素的最 佳参数组合为: 梳刷转速 64.52 r/min、凸轮转速 29.68 r/min、梳刷样式 II 型。

5 试验验证

田间试验在2018年6月29日进行,为消除试验中的随机误差,重复进行15次试验,采用OLYMPUSispeed TR型高速摄影机以100f/s、时间间隔20ms、记录时长80ms枸杞振刷采收过程,如图10所示,红色标记表示枸杞鲜果在振刷采收过程中每隔20ms的位置坐标。田间试验表明,熟果采收率为89.12%,青果错采率为5.87%,熟果破损率为6.24%。

Fig. 7 Response surfaces of influence of various factors on harvesting rate of ripe L. barbarum

图 8 各因素对青果错采率影响的响应曲面

Fig. 8 Response surfaces of influence of various factors on harvesting rate of unripe L. barbarum

图9 各因素对熟果破损率影响的响应曲面

图 10 枸杞振刷采收过程

6 结论

(1)为了实现枸杞机械采收的高效、低损,融合 振动和梳刷原理,设计了一种便携振刷式枸杞采收 机,主要由振动系统、梳刷系统、回位系统及控制系 统4部分组成。

(2)根据枸杞鲜果与果柄脱离机理,采用单个 集中质量力学模型,建立了采收机动力学模型,得到 了采收机作用于枸杞鲜果的接触点位移、速度、加速 度方程。

(3)运用 ADAMS 对梳刷和枸杞鲜果进行了柔 性化并对采收机进行了运动学与动力学仿真,得到 了采收机作用于枸杞鲜果的接触点位移、速度、加速 度和采收机作用于枸杞鲜果时的接触力,结果表明: 梳刷转速 60~70 r/min、凸轮转速 25~35 r/min、梳 刷样式Ⅱ型时,熟果可以从果柄上脱离且不受损伤。

(4)采用三因素三水平二次正交旋转组合试验,建立了熟果采收率、青果错采率、熟果破损率与梳刷转速、凸轮转速、梳刷样式之间的数学模型,分析了各因素对熟果采收率、青果错采率、熟果破损率的影响,确定了最佳参数组合:梳刷转速 64.52 r/min、凸轮转速 29.68 r/min、梳刷样式II型,并进行了田间试验验证。田间试验表明,熟果采收率为 89.12%,青果错采率为 5.87%,熟果破损率为 6.24%。

参考文献

- [1] 马嘉伟. 我国枸杞机械化采摘技术的现状及发展趋势[J]. 机械研究与应用, 2017, 30(4): 151-153.
 MA Jiawei. Research status and prospect of the machanized technology of picking wolfberry in China[J]. Mechanical Research & Application, 2017, 30(4): 151-153. (in Chinese)
- [2] 徐丽明,陈俊威,吴刚,等. 梳刷振动式枸杞收获装置设计与运行参数优化[J]. 农业工程学报,2018,34(9):75-82.
- XU Liming, CHEN Junwei, WU Gang, et al. Design and operating parameter optimization of comb brush vibratory harvesting device for wolfberry [J]. Transactions of the CSAE, 2018, 34(9): 75 82. (in Chinese)
- [3] 李强,叶力勤,安巍. 枸杞采摘机的适采条件[J]. 农机化研究, 2009, 31(6): 126-128.
 LI Qiang, YE Liqin, AN Wei. The suitable working of wolfberry harvest machine [J]. Journal of Agricultural Mechanization Research, 2009, 31(6): 126-128. (in Chinese)
- [4] SO J D. Vibration characteristics of boxthorn (Lycium Chinense Mill.) branches [J]. Applied Engineering in Agriculture, 2001, 17(6): 755 - 760.
- [5] SO J D. Vibratory harvesting machine for boxthorn (Lycium Chinense Mill.) berries [J]. Transactions of the ASAE, 2003, 46 (2): 211-221.
- [6] PETERSON D L, TAKEDA F, KORNECKI T. Harvester for "T", "V", and "Y" trellised eastern thornless blackberries [J]. Applied Engineering in Agriculture, 1992, 8(1): 9-12.
- [7] DU X Q, CHEN D, ZHANG Q, et al. Dynamic responses of sweet cherry trees under vibratory excitations [J]. Biosystems Engineering, 2012, 111: 305-314.
- [8] YU P C, LI C Y, TAKEDA F, et al. Quantitative evaluation of a rotary blueberry mechanical harvester using a miniature instrumented sphere[J]. Computers & Electronics in Agriculture, 2012, 88: 25 31.
- [9] YU P C, LI C Y, TAKEDA F, et al. Measurement of mechanical impacts created by rotary, slapper, and sway blueberry mechanical harvesters[J]. Computers & Electronics in Agriculture, 2014, 101: 84 - 92.
- [10] 张最,肖宏儒,丁文芹,等.振动式枸杞采摘机理仿真分析与样机试验[J]. 农业工程学报,2015,31(10):20-28.
 ZHANG Zui, XIAO Hongru, DING Wenqin, et al. Machanism simulation analysis and prototype experiment of *Lycium barbarum* harvest by vibration mode[J]. Transactions of the CSAE, 2015, 31(10):20-28. (in Chinese)
- [11] 周兵,何晶. 模拟手枸杞采摘机设计[J]. 农业工程学报,2010,26(增刊1):13-17.
 ZHOU Bing, HE Jing. Design of simulate hand wolfberry picking machine[J]. Transactions of the CSAE, 2010, 26(Supp. 1): 13-17. (in Chinese)
- [12] 张文强,张明明,张俊雄,等. 振摇枸杞采收机设计与试验[J/OL]. 农业机械学报,2018,49(7):97-102. http://www.j-csam.org/jcsam/ch/reader/view_abstract.aspx? file_no = 20180712&flag = 1. DOI: 10.6041/j.issn.1000-1298. 2018.07.012.

ZHANG Wenqiang, ZHANG Mingming, ZHANG Junxiong, et al. Design and experiment of vibrating wolfberry harvester [J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(7): 97 - 102. (in Chinese)

 [13] 张文强,李召召,谭豫之,等.变间距梳刷式枸杞采收装置优化设计与试验[J/OL].农业机械学报,2018,49(8): 83-90. http://www.j-csam.org/jcsam/ch/reader/view_abstract.aspx? flag = 1&file_no = 20180810&journal_id = jcsam. DOI: 10.6041/j.issn.1000-1298.2018.08.010.
 ZHANG Wenqiang,LI Zhaozhao, TAN Yuzhi, et al. Optimal design and experiment on variable pacing combing brush picking

device for *Lycium barbarum*[J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(8): 83 – 90. (in Chinese)

- [14] 赵健,陈云,王亚磊,等. 便携式枸杞振动采收装置参数优化试验研究[J]. 农机化研究, 2019, 41(3): 176-182.
 ZHAO Jian, CHEN Yun, WANG Yalei, et al. Experimental research on parameter optimization of portable vibrating and harvesting device of Chinese wolfberry[J]. Journal of Agricultural Mechanization Research, 2019, 41(3): 176-182. (in Chinese)
- [15] 陈军,王虎,蒋浩然,等. 猕猴桃采摘机器人末端执行器设计[J/OL]. 农业机械学报, 2012, 43(10): 151-154. http://www.j-csam.org/jcsam/ch/reader/view_abstract.aspx? flag = 1&file_no = 20121027&journal_id = jcsam. DOI: 10.6041/j.issn. 1000-1298.2012.10.027.
 CHEN Lup WANC Hu, WANC Haaran, et al. Design of and effector for kiniferit harmosting robot[I/OL]. Transactions of

CHEN Jun, WANG Hu, JIANG Haoran, et al. Design of end-effector for kiwifruit harvesting robot [J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(10): 151-154. (in Chinese)

[16] 傅隆生,张发年,槐岛芳德,等.猕猴桃采摘机器人末端执行器设计与试验[J/OL]. 农业机械学报, 2015, 46(3):
 1-8. http://www.j-csam.org/jcsam/ch/reader/view_abstract.aspx? flag = 1&file_no = 20150301&journal_id = jcsam.
 DOI: 10.6041/j.issn.1000-1298.2015.03.001.
 FU Longsheng, ZHANG Fanian, GEJIMA Yoshinori, et al. Development and experiment of end-effector for kiwifruit harvesting

FU Longsheng, ZHANG Fanian, GEJIMA Yoshinori, et al. Development and experiment of end-effector for kiwifruit harvesting robot[J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(3): 1-8. (in Chinese)

[17] 刘继展,李萍萍,李智国,等. 面向机器人采摘的番茄力学特性试验[J]. 农业工程学报,2008,24(12):66-70.
 LIU Jizhan, LI Pingping, LI Zhiguo, et al. Experimental study on mechanical properties of tomatoes for robotic harvesting[J].
 Transactions of the CSAE, 2008, 24(12):66-70. (in Chinese)

- [23] 张波屏. 播种机械设计原理[M]. 北京:机械工业出版社, 1982.
- [24] 任闯,高筱钧,苏微,等. 三七种子的物理机械特性试验[J]. 湖南农业大学学报(自然科学版),2015,41(1):109-112.
 REN Chuang, GAO Xiaojun, SU Wei, et al. Experimental study on physical and mechanical characteristics of *Panax notoginseng* seeds[J]. Journal of Hunan Agricultural University(Natural Sciences),2015,41(1):109-112. (in Chinese)
- [25] GB/T 6973—2005 单粒(精密)播种机试验方法[S].2005.
- [26] 王春林,彭海菠,丁剑,等. 基于响应面法的旋流泵优化设计[J/OL]. 农业机械学报,2013,44(5):59-65. http://www.jcsam.org/jcsam/ch/reader/view_abstract. aspx? flag = 1&file_no = 20130512&journal_id = jcsam. DOI: 10. 6041/j. issn. 1000-1298. 2013. 05. 012.

WANG Chunlin, PENG Haibo, DING Jian, et al. Optimization for vortex pump based on response surface method [J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(5):59-65. (in Chinese)

[27] 袁雪,祁力钧,王虎,等. 温室摇摆式变量弥雾机喷雾参数响应面法优化[J/OL]. 农业机械学报,2012,43(4):45-50. http://www.j-csam.org/jcsam/ch/reader/view_abstract.aspx? flag = 1&file_no = 20120410&journal_id = jcsam. DOI:10. 6041/j.issn.1000-1298.2012.04.010.

YUAN Xue,QI Lijun,WANG Hu, et al. Spraying parameters optimization of swing, automatic variables and greenhouse mist sprayer with response surface method[J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(4): 45 - 50. (in Chinese)

- [28] 赵选民.试验设计方法[M].北京:科学出版社,2006.
- [29] 赖庆辉,马文鹏,刘素,等. 气吸圆盘式微型薯排种器充种性能模拟与试验[J/OL]. 农业机械学报,2017,48(5):44-53. http://www.j-csam.org/jcsam/ch/reader/view_abstract.aspx? flag = 1&file_no = 20170505&journal_id = jcsam. DOI:10. 6041/j.issn.1000-1298.2017.05.005.

LAI Qinghui, MA Wenpeng, LIU Su, et al. Simulation and experiment on seed-filling performance of pneumatic disc seedmetering device for mini-tuber[J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(5):44 - 53. (in Chinese)

,.....

(上接第161页)

- [18] DAVIDSON J, SILWAL A, KARKEE M, et al. Hand-picking dynamic analysis for undersensed robotic apple harvesting[J]. Transactions of the ASABE, 2016, 59(4): 745 - 758.
- [19] LI J, KARKEE M, ZHANG Q, et al. Characterizing apple picking patterns for robotic harvesting [J]. Computers & Electronics in Agriculture, 2016, 127: 633-640.
- [20] HE L, FU H, SUN D Z, et al. Shake-and-catch harvesting for fresh market apples in trellis-trained trees [J]. Transactions of the ASABE, 2017, 60(2): 353 - 360.
- [21] 陈燕,蒋志林,李嘉威,等. 夹剪一体的荔枝采摘末端执行器设计与性能试验[J/OL]. 农业机械学报, 2018, 49(1): 35-41. http://www.j-csam.org/jcsam/ch/reader/view_abstract.aspx? flag = 1&file_no = 20180104&journal_id = jcsam. DOI: 10.6041/j.issn.1000-1298.2018.01.004.

CHEN Yan, JIANG Zhilin, LI Jiawei, et al. Design and testing of litchi picking end-effector integrated clamping and cutting performance[J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(1): 35-41. (in Chinese)

- [22] 杨义勇, 金德闻. 机械系统动力学[M]. 北京: 清华大学出版社, 2009.
- [23] 孙桓,陈作模,葛文杰. 机械原理[M]. 北京:高等教育出版社, 2006.
- [24] 季顺中, 李双, 陈树人, 等. 基于 ADAMS 的高速插秧机三插臂分插机构运动仿真[J]. 农业机械学报, 2010, 41(增 刊): 82-85.

JI Shunzhong, LI Shuang, CHEN Shuren, et al. Kinematical simulation of three separating planting bars of high-performance rice transplanter based on ADAMS[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41 (Supp.): 82-85. (in Chinese)

[25] 杜岳峰,毛恩荣,宋正河,等. 基于 ADAMS 的玉米植株收获过程仿真[J/OL]. 农业机械学报,2012,43(增刊):106-111. http://www.j-csam.org/jcsam/ch/reader/view_abstract.aspx? flag = 1&file_no = 2012s21&journal_id = jcsam. DOI: 10.6041/j.issn.1000-1298.2012.S0.021.

DU Yuefeng, MAO Enrong, SONG Zhenghe, et al. Simulation on corn plants in harvesting process based on ADAMS[J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(Supp.): 106 – 111. (in Chinese)

[26] 贾洪雷,郭明卓,郭春江,等. 免耕播种机动态仿生破茬装置设计与参数试验优化[J/OL]. 农业机械学报, 2018, 49(10):103-114. http://www.j-csam.org/jcsam/ch/reader/view_abstract.aspx? flag=1&file_no=20181012&journal_id = jcsam. DOI:10.6041/j.issn.1000-1298.2018.10.012.

JIA Honglei, GUO Mingzhuo, GUO Chunjiang, et al. Design of dynamic bionic stubble cutting device and optimization test of parameters [J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(10): 103 – 114. (in Chinese)