doi:10.6041/j.issn.1000-1298.2015.09.022

基于相位检测的高盐碱与高有机土壤水分传感器研究*

赵燕东^{1,2} 高 超^{1,2} 刘卫平^{1,2} 王勇志^{1,2}

(1. 北京林业大学工学院,北京 100083; 2. 北京林业大学城乡生态环境北京实验室,北京 100083)

摘要:为解决高盐碱土壤与高有机土壤水分实时检测难题,研究了一种基于相位检测的时域传输(TDT)型土壤水分检测方法,并对传感器的探头结构、测量频率进行了分析。通过试验分析可知:当探针直径为2mm、两针间距为10mm、针长120mm、测量频率为100MHz时,在砂壤土、粘壤土、盐碱土、高有机土中的测量误差分别为±0.87%、±0.95%、±2.20%、±1.94%,动态响应时间约为4ms左右,测量性能较好,满足实际测量需要。通过与国外设备TRIME(TDR)及国产设备BD-Ⅲ型土壤水分传感器的对比研究,得出测量频率100MHz时的TDT型土壤水分传感器的对比研究,得出测量频率100MHz时的TDT型土壤水分传感器能够满足高盐碱土壤、高有机土壤水分实时检测的要求,具有良好的动态性能和稳定性,且技术难度较小、成本低,有着很好的研究和应用前景。

关键词:土壤水分 相位检测 传感器 时域传输 高盐碱土壤 高有机土壤 中图分类号: TP212; S152.7 文献标识码: A 文章编号: 1000-1298(2015)09-0151-08

Study of Moisture Sensor for High Saline-alkali Soil and High Organic Soil Based on Phase Detection

Zhao Yandong^{1,2} Gao Chao^{1,2} Liu Weiping^{1,2} Wang Yongzhi^{1,2}

(1. School of Technology, Beijing Forestry University, Beijing 100083, China

2. Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing 100083, China)

Abstract: To solve the problem of moisture real-time detection in high saline-alkali soil and high organic soil, this paper used time domain transmission (TDT) method to detect soil moisture based on phase detection. The probe of sensor structure and measuring frequency were analyzed in detail. The experiments showed that when the probes were 2 mm in diameter, 10 mm in interval, 120 mm in length and the frequency was 100 MHz, the measured performance was good to meet the demands of actual measurement. The measurement error of TDT soil moisture sensor in sandy loam, clay loam, saline-alkali soil and high organic soil were $\pm 0.87\%$, $\pm 0.95\%$, $\pm 2.20\%$ and $\pm 1.94\%$ respectively, and the dynamic response time of TDT soil moisture sensor was about 4 ms. The comparative analysis between foreign equipment TRIME (TDR) and domestic equipment BD – III type soil moisture sensor showed that TDT soil moisture sensor of 100 MHz could meet the requirements for detecting high saline-alkali soil and high organic soil moisture in real-time. In addition, this device has good dynamic performance and stability with less technical difficulty and low cost but for good research and application prospects.

Key words: Soil moisture Phase detection Sensor Time domain transmission High saline-alkali soil High organic soil

引言

土壤含水率既是研究农业及林业作物干旱的重

要指标,也是农林灌溉管理、区域水文条件研究和流 域水分平衡计算的重要参量^[1-3]。土壤含水率的变 化直接影响农林作物产量以及土壤发育演变^[4-8],

收稿日期:2015-01-04 修回日期:2015-01-30

*国家自然科学基金资助项目(31371537)和北京市共建项目专项资助项目

作者简介:赵燕东,教授,博士生导师,主要从事生态智能检测与控制研究,E-mail: yandongzh@ bjfu. edu. cn

高盐碱土壤(含盐量超过千分之六)和高有机土壤 (含有机质20%以上)水分实时检测一直是一个难 题。常用土壤水分测量方法分为烘干法、瓶桶法等 直接法^[9-11]和电阻法、介电法、中子法、近红外法等 间接法^[12-15]。其中介电法又分为时域反射法 (TDR)、频域反射法(FDR)、驻波比法(SWR) 等[16-18]。席琳乔等[9]以塔里木盆地盐碱地土壤为 对象,使用TDR 法测量土壤含水率和电导率。研究 结果表明,使用 TDR 测定土壤水分,其值会受到土 壤种类、电导率、密度等多种因素的制约。作为土壤 盐分指标, 土壤电导率反映了土壤中离子的含量, 当 土壤电导率较低时,TDR 水分测定值的准确性较 高;而当土壤的电导率较高时,由于诸多离子的存 在,会削减反射的脉冲,影响脉冲反射时间,其所测 土壤含水率的准确性较差。FDR 法利用土壤的介 电特性来测量土壤含水率,由于水的介电常数比一 般物料的介电常数要大得多,所以当土壤水分增加 时,其介电常数相应增大,测量时水分传感器给出的 电容值也随之上升,根据传感器的电容值与土壤水 分之间的对应关系,可测出土壤含水率。但是在低 频工作时容易受土壤盐分、质地和容重的影响。如 何减小田间土壤质地、结构与含盐量对测量的影响 是研究的关键问题。李秀春等^[20]基于 SWR 原理研 制出 SMP-01 型土壤水分传感器,通过测试该传感 器在3种土壤质地(砂土、壤土、粘土)和不同土壤 水分含水率下的输出,认为对于普通土壤(壤土、粘 土)含水率测量范围最好在14%~50%,对于砂土 监测范围最好在 5%~23%,盐碱土监测范围最好 在 20%~35%,酸性土地区最好在 25%~45%之 间。由此表明 SWR 法测量盐碱土壤含水率的范围 比较小。TDR 法在土壤水分快速测量中具有实时、 快速、准确的性能优势,但成本昂贵,且在某些土质 中应用受限^[21-22]。SWR 法在成本上较 TDR 法有 了很大幅度的降低,但在测量精度上逊于 TDR 法, 且在不同土壤中使用时,SWR 传感器需要重新标 定^[23]。时域传输(Time domain transmisson, TDT)原 理,其工作过程是通过测量电磁波信号在嵌入土壤 介质波导中的传播时间来测量土壤介质的介电常 数。TDT 技术是一种新兴的电磁技术,该方法近些 年被引入介质水分测定研究领域^[24-28]。TDT 法只 需要测量电磁波信号在传感器探头中的单程传输延 迟时间,技术难度远远低于 TDR 法,从而降低了产 品成本^[29-32]。目前,不同设计特点的 TDT 仪器测 定土壤含水率的性能已有研究^[33-37]。但是,TDT 仪 器在不同类型土壤上测定含水率情况尚无系统的研 究,尤其是在TDR 技术应用受限的高盐碱土、高有

机土以及红壤土中,TDT 仪器的应用情况还不清 楚^[38]。为此本文基于时域传输原理设计 TDT 土壤 水分传感器,探究传感器用于砂壤土、粘壤土、盐碱 土和有机土时的探针结构和测试频率,并测试传感 器的静态性能、动态性能和稳定性。

1 测量原理

时域传输法其工作过程是通过测量电磁波信号 在嵌入土壤介质波导中传播时间来测量土壤介质的 介电常数^[39],不同于 TDR 传感器和 SWR 传感器, TDT 传感器探头末端不是开路的,在电磁波的发射 端和信号输出探头处各有一个电磁波信号采样点, 传感器电路测量的是电磁波在嵌入土壤中波导探头 上的单程传输时间。如图1所示。

电磁波信号分成2路。一路通过传输线直接送 到相位比较器的A端,作为稳定电磁波相位比较的 基准。另一路信号通过传感器探头后输入相位比较 器的B端,与从A端送来的正弦波相位基准信号进 行相位比较。初始状态(即探针在空气中)时,2路 信号经过的路径理想地视为近似相等,当探针插入 土壤中时,B路电磁波信号到达相位比较器时会有 一定时间的延迟,相位比较器输出一个反映B落后 于A的相角α,即两路电磁波信号传输的时间差*T*。

传感器探头环形导体长度 L 已知,电磁波沿土 壤中导体单程传播时间 T 可通过相位比较器测量 得到,土壤表观介电常数表达式为

$$\varepsilon_{ra} = \left(\frac{c_0 T}{L}\right)^2 \tag{1}$$

式中 c_0 ——电磁波在真空中速度,取3×10⁸ m/s

在没有介质损耗的情况下,表观介电常数 ε_{ra} 可 近似等于介电常数 ε_r ,即 $\varepsilon_{ra} \approx \varepsilon_r$,再根据Topp方 程^[40]

$$\theta_{v} = -5.3 \times 10^{-2} + 2.92 \times 10^{-2} \varepsilon_{ra} - 5.5 \times 10^{-4} \varepsilon^{2} + 4.3 \times 10^{-6} \varepsilon^{3}$$
(2)

便可计算得到土壤体积含水率 θ_v。从式(2)也可看 出,土壤体积含水率是关于土壤介电常数 ε_m的一元 三次函数。 由上述原理,可以设计基于时域传输原理 (TDT)的土壤水分传感器组成框图,如图2所示。

图 2 TDT 土壤水分传感器组成框图

Fig. 2 Composition diagram of TDT soil moisture sensor

2 测量探头结构

Fig. 3 Configuration of TDT probe

TDT 土壤水分测试仪的 U 形探头可以看作一 段传输线,其周围填充的是介电常数为 ε, 的土壤介 质,其等效电路模型为平行双导线传输线,双导线的 特征阻抗为

$$Z_{0} = \frac{120}{\sqrt{\varepsilon_{r}}} \ln\left(\frac{D}{d} + \sqrt{\left(\frac{D}{d}\right)^{2} - 1}\right) \approx \frac{120}{\sqrt{\varepsilon_{r}}} \ln\frac{2D}{d} \quad (3)$$

式中 D——两导线之间的中心距 d——导线直径

2.1 探针结构分析

为了确定合适的传感器测量探头,首先采用 HFSS 仿真软件进行结构仿真。设置求解频率为 100 MHz,求解类型为激励求解,周围介质的直径为 100 mm,高度为 500 mm,介电常数为 21,边界条件 为理想边界。利用正交试验法,对针直径分别为 2.0、2.5、3.0 mm,两针间距分别为 3、5、7、10、 12 mm,针长为 120 mm 的不锈钢波导探头,通过 HFSS 仿真可得到探针结构变化时水平剖面上的电 场分布情况,如图4 所示。

当针直径为 2.0mm、两针间距为 10 mm 时, 仿 真测量敏感区最大, 且电磁场分布均匀, 因此, 以下 工作, 均采用针直径为 2.0 mm、两针间距为 10 mm、 长度为120 mm 式探针结构。

2.2 传感器测试频率分析

当探头结构为针直径 2.0 mm、两针间距 10 mm、针 长 120 mm 时,采用网络分析仪(型号:NA7300A,频 率范围: 0.3 ~ 3 ~ 000 MHz,频率稳定度: $\leq \pm 5 \times 10^{-6}$,频率分辨率: 1 Hz)作为可调信号源,用北京普 源生产的 DS1302CA 型示波器(其测量的最大频率 为 300 MHz,采样率范围为 1 Sa/s ~ 2 G Sa/s)获取探 头 A、B 两路电磁波信号的波形。试验设备连接如 图 5 所示。测试步骤为:

(1)将网络分析仪的信号输出端接在 TDT 探头的一端,同时将示波器的通道1信号输入端并联 在接口处。TDT 探头的另一端连接示波器通道2, 同时信号输出端短接一只47 Ω的无感电阻,用来吸 收传导过来的信号,以免发生反射,影响示波器的信 号观测。

(2) 打开各仪器,将网络分析仪的输出信号频 率调成 20 MHz,此时缓慢地将 TDT 探头伸入水桶 中,观察波形变化,并记录。

(3) 增加信号源频率,观察波形变化并记录。

通过试验,观察并记录示波器中2路正弦电磁 波信号的相对相位移动情况,得到如表1所示结果。

为了保证测量结果的单调性,要求相位差不超过180°,由表1得出,可采用100 MHz作为信号源。 信号源采用5V供电的有源晶振,其输出信号为幅 值5V、频率100 MHz的正弦信号。

选用河北省廊坊市固安县的粘壤土作为试验 土样,充分晒干后,用孔径为2mm的筛子筛掉土 壤中的碎石等杂质。4份等量土样装入小水桶中, 依次加入适量蒸馏水,均匀混合,使用德国IMKO 公司生产的TRIME - PICO 32型TDR 传感器辅助 测量,配制成含水率约为5%、11.5%、18%、 23.3%、31.1%、35%、42%左右的土壤样本。A、B 两路信号的相位差与土壤含水率之间关系如图6 所示。

3 传感器性能试验

为探究 TDT 传感器在不同类型土壤中的测量 性能,选取4种典型土壤分别进行试验:砂壤土、粘 壤土、盐碱土、有机土。本试验采用4种方法(烘干 法、TDR 法、SWR 法、TDT 法)测量4种土壤4个梯 度(5%、15%、25%、35%左右)含水率的土样数据, 以烘干法为基准,分析 TDT 法在不同类型土壤中测 量的静态性能与动态性能,并对自制 TDT 传感器进 行稳定性与重复性试验,得出相关结论。

本文设计的 TDT 探头是 U 形结构, 如图 3 所示。

图 4 探头直径和两线间距变化时波导探头周围的电磁场分布

Fig. 4 Electric field distribution around sensor probe

(a) 针直径 2.0 mm,两针间距 3 mm (d) 针直径 2.0 mm,两针间距 10 mm (g) 针直径 2.5 mm,两针间距 10 mm (h) 针直径 2.5 mm,两针间距 12 mm (i) 针直径 3.0 mm,两针间距 5 mm (j) 针直径 3.0 mm,两针间距 7 mm (k) 针直径 3.0 mm,两针间距 10 mm (l) 针直径 3.0 mm,两针间距 12 mm

(b) 针直径 2.0 mm,两针间距 5 mm (c) 针直径 2.0 mm,两针间距 7 mm (e) 针直径 2.5 mm, 两针间距 5 mm (f) 针直径 2.5 mm, 两针间距 7 mm

of course colocting over

3.1 试验前准备工作

试验设备包括:电热恒温干燥箱(型号:202-OEBS, 电源电压: 220 V, 电热功率: 1.6 kW, 温度范 围:室温~250℃),万用表(型号:VC9807A+),环

1 a. 1	Results of source se	lecting experiments	
频率/MHz	A、B 相位差/(°)	通道2波形畸变情况	
20	0	无畸变	
50	约 30	无畸变	
100	约 180	无畸变	
120	约 230	略微畸变	
200	约 450	较严重畸变	
300	无法观测	严重畸变	
			_

刀取土样设备,带盖小桶5只,塑料方盒,5V稳压 电源,精度为0.1g电子天平,德国 IMKO 公司 TDR (TRIME)水分测试仪(测量范围:0%~100%,测量

精度:0% ~ 40%, ± 1%;40% ~ 70%, ± 2%), BD -Ⅲ型 SWR 水分传感器(北京林业大学自主研制,测量范围:0% ~ 100%,测量精度:±2%),4 个 相同长度和间距的 TDT 探头,2 块 TDT 传感器测量 电路板。采用 TDT 传感器探头与测量电路板交叉 组合的方式分别在空气及水中进行试验,选出性能 相近的4 只传感器探头以及测量电路板2块。

分别取4种土样的4份等量土壤装入小桶中, 再依次将小桶中的土壤倒入配土土壤所用的塑料盒 内,分别加入适量蒸馏水,均匀混合,使用TDR传感 器辅助测量,配制成含水率约为5%、15%、25%、 35%左右的土壤样本。为了保证4种测量方法在每 个土样中测量数据的可靠性,除了在配制土样及埋 设TDT 探头时保持桶内土样均匀铺置并搁置48 h 让土壤水分充分均匀分布外,测量时,采样点的选择 也需要考虑到其位置是否能充分反映土样整体含水 率情况。为此,本文设计了如图7 所示的采样点位 置。

3.2 传感器静态性能试验

3.2.1 试验步骤

在土样配制完成后,在室内搁置48h使土壤水 分运动均匀后,对4种土样按以下试验步骤测量并 记录数据。

(1) TDT 传感器测量:使用本文研制的 TDT 传 感器测量电路板连接已经埋设好的 TDT 探头,并将 电路板输出端接到万用表上,拨到2V测电压挡,分 别记录输出电压。

(2) 环刀法取土样:使用取土环刀从每个土样

桶中取出保持原样的土样一份,编号,加上下盖,称 量记录数据,然后放入恒温干燥箱中。

(3)烘干土样:关闭恒温干燥箱的隔热门,将温度设定在110℃,6h后关掉恒温箱电源,取出土样 盒依次称量,记录数据。然后再放回恒温箱中,打开 电源,此后,每隔1h后取出土样,直至每个土样盒 称量数据不再变化为止。

3.2.2 试验数据处理

一次土样试验中使用的土样盒体积为100 cm³,1 g 水的体积约为1 cm³,因此将土样盒烘干前的质量减 去烘干后的质量,就可以得到土样中含水质量,而体 积已知,为100 cm³,从而可计算得到土样体积含水 率。

以砂壤土为例,将记录的2次(1个取样点, 2块测量电路板)TDT 测量数据求平均值,记录数 据。以烘干法所得的数据作为TDT 法测量数据是 否准确的评判依据。均方差又称均方根误差,或称 标准误差,它是观测值与真值偏差的平方和与观测 次数 n 比值的平方根。本试验中,TDT 传感器测量 值为观测值,烘干法得到的含水率为真值,观测次数 为4。为计算方便,本试验将观测值与真值均去掉 百分号后进行计算,得到的均方差越小,说明测量误 差越小,精度越高。

TDT 传感器的测量值为电压,因此需要以烘干 法的测量数据为 y 轴,TDT 传感器输出电压为 x 轴, 进行线性拟合,得到结果如图 8 所示。

经图 8 中线性 k、b 系数校正后,计算得到 TDT 传感器测量的土壤体积含水率,同时可计算得到 TDT 传感器测量结果的均方差,结果如表 2 所示。

表 2 砂壤土体积含水率测量结果

	Tab. 2	Test rest	ult of sand	ly loam	%
测量	土样	土样	土样	土样	均方根
方法	桶1	桶 2	桶 3	桶 4	误差
烘干法	7.43	12.92	18.23	32.57	
TDT	7.73	11.75	19.41	32.18	0.87

采用上述方法,可依次得到粘壤土、盐碱土、有

0%

moisture content in organic soil

	表3 粘壤土体积含水率测量结果						
	Tab. 3	Test res	sult of clay	/ loam	%		
测量	土样	土样	土样	土样	均方根		
方法	桶1	桶 2	桶 3	桶 4	误差		
于法	4.72	13.53	22.81	30.04			
Г	5.78	11.96	23.09	30.20	0.95		

	表 4	盐碱土体积			
	Tab. 4	Test result	of saline-	alkali soil	%
量	土样	土样	土样	土样	均方根
法	桶1	桶 2	桶 3	桶4	误差
法	4.41	8.66	20.46	29.21	
	2.40	12.38	19.63	28.33	2.20

从以上分析可以看出:

烘

TD

测

方

烘干

TDT

(1) 本文研究的基于相位检测的 TDT 型土壤 水分传感器校正后在砂壤土、粘壤土、盐碱土、有机 土中的测量误差分别为±0.87%、±0.95%、 $\pm 2.20\%$ $\pm 1.94\%$

表5 有	可机土体积	含水率测	量结果	
Tab. 5	Test resu	ult of organ	nic soil	
上程	1. #¥	1. 投	1.42	1/2-

测量	土样	土样	土样	土样	均方根
方法	桶1	桶 2	桶 3	桶 4	误差
烘干法	9.82	18.71	28.42	38.41	
TDT	11.61	15.92	30.23	37.55	1.94

(2) 通过分析砂壤土与粘壤土中的测量结果, 本文研究的 TDT 传感器经系数校正后,测量误差在 ±1% 左右。TDT 传感器在不同质地的土壤中均可 以较精确地测量土壤水分。

(3) 本文研究的 TDT 传感器在不同质地的土 壤以及盐碱土、有机土中,其线性拟合的系数差别很 大,在具体使用时需要根据使用的场合重新进行标 定。

3.3 传感器动态性能试验

传感器的动态性能是指传感器的输出随着时间 变化,在不同输入量情况下的响应特性。所谓响应, 是指输入信号发生变化时响应输出信号随之变化的 情况。分别在4种类型土壤(砂壤土、粘壤土、盐碱 土、有机土)下,对3种传感器(TDR、SWR、TDT)进 行动态性能测试,得到其稳定时间 T. 作为传感器动 态性能对比依据。其中,TDR 测量设备测量值通过 屏幕数显直接读取,其T.时间用秒表记录从按下测 量键到出现测量数值的时间差,并记录(平均响应 时间为5.5 s)。SWR 与 TDT 传感器采用示波器观 察并记录给传感器上电到传感器稳定输出的阶跃响 应曲线,观测并记录 T_{i} 值(表 6)。

4 种土壤中传感器稳定时间 表 6

1 ab. 0	Sensor	stable time	on tour	types of	son ms	
传感器	砂壤土	粘壤土	盐碱土	有机土	平均时间	
SWR	2.30	2.48	2.58	3. 38	2.69	

4.48

5.25

4.15

3.60

可以得出以下结论:

3.25

TDT

(1) 在4种测量土壤中,本文研究的 TDT 土壤 水分传感器动态响应时间约为4 ms 左右,远远优于 TDR(TRIME)测量设备5.5s左右的响应时间, 稍逊 于 SWR(BD-Ⅲ)传感器 3 ms 左右响应时间。

(2) SWR(BD-Ⅲ) 传感器的稳定时间略低于 同等测量条件下的 TDT 传感器,且随测量土壤含水 率的升高,稳定时间呈现一定的增大趋势。

3.4 TDT 土壤水分测试仪稳定性试验

稳定性是测量仪器保持其测量结果随时间恒定 的能力,用测量示值经过规定的时间所发生的变化 量来进行定量表示,是衡量测量仪器的重要性能参数之一。配制约为5%、15%、25%、35%左右含水率的粘壤土土样,将传感器探头埋入土样中,将土样放置48h让土壤中水分充分均匀后,打开土样盖,每间隔2min将TDT探头连接到土壤水分测试仪对 土样容积含水率进行测量,为避免随机误差的影响,每个土样测量6次,去掉最小值与最大值后求平均 值,连续测量30min,记录测量结果。图12为稳定 性试验结果,另从测量数据可以看出,最大偏移量分 别为0.13%、0.20%、0.17%和0.21%,因此本文研究的TDT土壤水分测试仪具有良好的稳定性。

4 结论

(1)从时域传输原理入手,设计制作了功能完整的基于时域传输原理的土壤水分测试仪。对TDT

传感器探头结构、信号源频率选择等问题做了比较 系统的理论研究和试验分析。通过试验,较为系统 地对比了 TDR 法、SWR 法、TDT 法在不同类型土壤 中的性能。

(2) 依据 TDT 传感器探头周围土壤介质介电 常数表达式 $\varepsilon_{ra} = \left(\frac{c_0 T}{L}\right)^2$,并保证在整个测量范围 内,测量相位差呈单调变化,以此确定探头长度 *L* 的 可选择范围。

(3)通过试验,本文研究的 TDT 土壤水分传感器校正后在砂壤土、粘壤土、盐碱土、有机土中的测量误差分别为±0.87%、±0.95%、±2.20%、±1.94%。性能与 SWR(BD-Ⅲ)传感器相当。

(4)试验表明,TDT 水分传感器在盐碱土和有 机土中的测量误差小于 2.5%,有较好的测量性能, 而 TDR 法、SWR 法、TDT 法在盐碱土和有机土的水 分测量中均有一定的局限性,或是测量误差偏大,或 是测量范围偏小。

(5)4种土壤中的测试表明,本文研究的 TDT 土壤水分传感器动态响应时间约为4 ms 左右,远远 优于 TDR(TRIME)测量设备的 5.5 s 响应时间,稍 逊于 SWR(BD-Ⅲ)传感器的 3 ms 响应时间。

(6) 试验证明本文研究的 TDT 土壤水分测试 仪具有良好的稳定性。

参考文献

- 1 Ayers P D, Perumpral J V. Moisture and density effect on cone index[J]. Transactions of the ASAE, 1982, 25(5): 1169-1172.
- 2 Baver L D, Gardner W H, Gardner W R. Soil physics [M]. 4th ed. New York: John Wiley, 1972:1-12.
- 3 Busscher W J. Adustment of flat-tipped penetrometer resistance data to a commen water content [J]. Transactions of the ASAE, 1990,33(4):519-524.
- 4 Chesness J L, Ruiz E E, Cobb Jr C. Quantitative description of soil compaction in peach orchards utilizing a portable penetrometer [J]. Transactions of the ASAE, 1972, 15(2):217 - 219.
- 5 Droogers P, Fermont A, Bouma J. Effects of ecological soil management on workability and trafficability of a loamy soil in the Netherlands [J]. Geoderma, 1996, 73(4):131-145.
- 6 Deans J D, Milne R. An electrical recording soil moisture tensiometer [J]. Plant and Soil, 1978, 50(2):509-513.
- 7 Elbanna E B, Witney B D. Cone penetration resitance equation as a function of the clay ratio, soil moisture content and specific weight[J]. Journal of Terramechanics, 1987, 24(1):41-56.
- 8 Bowman G E, Hooper A W, Hartshorn L. A prototype infrared reflectance moisture meter [J]. Journal of Agricultural Engineering Research, 1985, 31(1):67-79.
- 9 Gardner W, Kirkham D. Determination of soil moisture by neutron scattering [J]. Soil Science, 1952, 73(5):391-401.
- 10 Heimovaara T J. Frequency domain analysis of time domain reflectrometry waveform: I. Measurement of the complex dielectric permittivity of soils[J]. Water Resources Research, 1994,30(2):189-199.
- 11 Ley G J, Mullins C E, Lal R. The potential restriction to root growth in structurally weak tropical soils [J]. Soil and Tillage Research, 1995, 33(2):133-142.
- 12 陈季丹,刘子玉. 电介质物理学[M]. 西安:西安交通大学出版社,1991:12-35.
- 13 戴晴,黄纪军,莫锦军. 现代微波与天线测量技术[M]. 北京: 电子工业出版社,2008:7-33.
- 14 董树义. 微波测量技术 [M]. 北京:北京理工大学出版社, 1991:11-18.
- 15 赵燕东,王一鸣. 基于驻波率原理的土壤含水率测量方法[J]. 农业机械学报,2002,33(4):109-111. Zhao Yandong, Wang Yiming. Study on the measurement of soil water content based on the principle of standing-wave ratio[J]. Transactions of the Chinese Society for Agricultural Machinery, 2002,33(4):109-111. (in Chinese)

16 赵燕东.基于驻波率原理的土壤水分测量方法与传感器的研究[D].北京:中国农业大学,1999:1-43.

- 17 许景辉,马孝义,Sally D Logsdon. 基于低频滤波法的 T-TDR 含水率测量方法研究[J]. 农业机械学报,2014,45(6):172-176. Xu Jinghui, Ma Xiaoyi, Sally D Logsdon. Measurement of soil moisture with T-TDR probe based on LFF method[J]. Transactions of the Chinese Society for Agricultural Machinery,2014,45(6):172-176. (in Chinese)
- 18 许景辉,马孝义,Sally D Logsdon,等. FDR 探头结构对土壤介电谱测量的影响分析[J]. 农业机械学报,2014,45(1): 102-107.
 - Xu Jinghui, Ma Xiaoyi, Sally D Logsdon, et al. FDR probe structure influence on the soil dielectric spectrum measurement [J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(1):102 - 107. (in Chinese)
- 19 席琳乔,余建勇,张利莉. TDR 技术测定盐碱地土壤盐分和水分及标定研究[J]. 塔里木大学学报,2007,19(3):6-10. Xi Linqiao, Yu Jianyong, Zhang Lili. Calibration on measurement of soil salinity and water using time domain reflectrometry (TDR)[J]. Journal of Tarim University,2007,19(3):6-10. (in Chinese)
- 20 李秀春,刘洪禄,杨培岭. SMP-01 土壤水分传感器研制[J]. 中国农村水利水电,2002,19(1):38-39.
- 21 赵燕东. 土壤水分快速测量方法及其应用技术研究[D]. 北京:中国农业大学,2002:1-48.
- 22 冯磊.基于时域传输原理的土壤水分测量技术研究[D].北京:中国农业大学,2011:1-29.
- 23 何小艇.高速脉冲技术[M].杭州:浙江大学出版社,1990:22-29.
- 24 江浩浩,董希斌,王海飙. 边坡土壤含水率对不同植被土壤抗剪强度的影响[J]. 森林工程,2009,25(3):77-80. Jiang Haohao, Dong Xibin, Wang Haibiao. Effects of slope soil water content on soil shear strength of different vegetation[J]. Forest Engineering, 2009,25(3):77-80. (in Chinese)
- 25 匡秋明,赵燕东,白陈祥.节水灌溉自动控制系统的研究[J].农业工程学报,2007,23(6):136-139. Kuang Qiuming, Zhao Yandong, Bai Chenxiang. Automatic monitor and control system of water saving irrigation [J]. Transactions of the CSAE, 2007, 23(6): 136-139. (in Chinese)
- 26 李翰如. 电介质物理导论[M]. 成都:成都科技大学出版社, 1990:15-31.
- 27 罗锡文.利用微波反射效应测定土壤强度的研究[J].农业工程学报,1995,11(1):46-51. Luo Xiwen. Study on soil strength with microwave reflection loss [J]. Transactions of the CSAE,1995,11(1):46-51. (in Chinese)
- 28 孙目珍. 电介质物理基础[M]. 广州:华南理工大学出版社, 2000:12-28.
- 29 王伟,齐长永. 土壤水分传感器的研制[J]. 传感器技术,1991,1(2):21-24.
 Wang Wei, Qi Changyong. Soil-moisture sensors[J]. Journal of Transducer Technology, 1991,1(2):21-24. (in Chinese)
- 30 王增和,丁卫平,李平辉.电磁波与电磁场[M].北京:机械工业出版社,2007:15-18.
- 31 王月清,华光.电磁场与电磁波导论[M].北京:电子工业出版社, 2009:22-31.
- 32 王新稳,李萍. 微波技术与天线[M]. 北京: 电子工业出版社, 2003:11-17.
- 33 王贵彦,史秀捧,张建恒,等. TDR 法、中子法、重量法测定土壤含水量的比较研究[J]. 河北农业大学学报,2000,23 (3): 23-26.

Wang Guiyan, Shi Xiupeng, Zhang Jianheng, et al. A study on the comparison of measuring soil water content with TDR, neutron probe and oren dry[J]. Journal of Agricultural University of Hebei, 2000,23(3):23-26. (in Chinese)

- 34 席承藩. 土壤分类学[M]. 北京:中国农业出版社, 1994: 258-341.
- 35 殷之文. 电介质物理[M]. 2版. 北京:科学出版社, 2003:14-25.
- 36 王一平,郭宏福.电磁波——传输·辐射·传播[M].西安:西安电子科技大学出版社,2006:17-35.
- 37 赵克玉,许福永.微波原理与技术[M].北京:高等教育出版社, 2006:12-17.

38 张立彬. 匀密度土样制备装置的研究[J]. 浙江农业大学学报,1993,19(1):38-40.

Zhang Libin. A new device for preparation of soil sample [J]. Journal of Zhejiang Agricultural University, 1993, 19(1):38-40. (in Chinese)

- 39 郑茹梅,李子忠,龚元石.运用时域传输技术测定不同类型土壤的含水率[J].农业工程学报,2009,25(8):8-13. Zheng Rumei, Li Zizhong, Gong Yuanshi. Measurement of soil water content for different soil types by using time domain transmission technology[J]. Transactions of the CSAE, 2009,25(8):8-13. (in Chinese)
- 40 Topp G C, Davis J L, Annan A P. Electromagnetic determination of soil water content [J]. Water Resources Research, 1980, 16(3): 574-582.