doi:10.6041/j.issn.1000-1298.2015.08.014

晋陕蒙能源区不同构型土体水分入渗特性模拟*

甄 庆^{1,2} 摄晓燕¹ 张应龙³ 韩凤朋¹ 张兴昌¹

(1.中国科学院水利部水土保持研究所黄土高原土壤侵蚀与旱地农业国家重点实验室,陕西杨凌 712100;2.中国科学院大学,北京 100049; 3.榆林沙漠王生物科技有限公司,榆林 719300)

摘要:采用一维垂直积水入渗试验,研究晋陕蒙能源区不同构型土体的水分入渗特性。结果表明:不同构型土体的 入渗能力差异明显,表现为风沙土、黄土、砒砂岩的入渗能力依次降低,风沙土和黄土中采用混合添加和分层添加 砒砂岩的方式均可以延长入渗时间并能降低入渗速率;在控制较高容重的条件下,含有料姜石和煤矸石的土体入 渗能力低;层状结构土体的入渗能力低于均质土壤;采用线性函数可以很好地描述不同构型土体累积入渗量与湿 润锋推进距离之间的关系;与 Philip 入渗模型相比,Kostiakov 入渗模型可以更好地拟合不同构型土体的入渗过程。 关键词:土体构型 入渗 层状结构 土石混合结构 晋陕蒙能源区 中图分类号: S152.7⁺2 文献标识码:A 文章编号: 1000-1298(2015)08-0090-07

Simulation of Infiltration Characteristics with Various Soil Configurations in Shanxi – Shaanxi – Inner Mongolia Energy Zone

Zhen Qing^{1,2} She Xiaoyan¹ Zhang Yinglong³ Han Fengpeng¹ Zhang Xingchang¹

(1. State Key Laboratory of Soil Erosion and Dry-land Farming on the Loess Plateau, Institute of Soil and Water Conservation,

Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Yulin Desert King Biotechnology Co., Ltd., Yulin 719300, China)

Abstract: The soil infiltration characteristic is one of the most important soil physical properties. The structure and texture of the soil configuration in Shanxi – Shaanxi – Inner Mongolia energy zone are quite complex which results in different infiltration properties. The infiltration characteristics of different soil configurations were analyzed by one-dimensional vertical infiltration experiment. The results showed that soil infiltration characteristics were strongly influenced by soil configuration, and the infiltration capacity was decreased in the order of aeolian sandy soil, loess soil and soft rock. The mixed and layered addition of soft rock to aeolian sandy soil and loess soil both could extend infiltration time and reduce infiltration rate. The infiltration process of soil containing calcites and gangue was inhibited under the high bulk density condition. Layered structure soil had a lower infiltration capacity than that of homogeneous soil. The relationship between cumulative infiltration and wetting front advancing distance could be well expressed as a linear function model. Kostiakov infiltration model could better fit the infiltration process with different configurations ($R^2 > 0.93$) than that of Philip model. The results provided an experimental evidence for soil water movement process and also offered a technical support for the reconstruction and reclamation of mining soils in Shanxi – Shaanxi – Inner Mongolia energy zone.

Key words: Soil configuration Infiltration Layered structure Soil - rock mixed structure Shanxi -

Shaanxi – Inner Mongolia energy region

收稿日期: 2014-09-23 修回日期: 2014-10-22

^{*} 国家自然科学基金资助项目(41101528)、中国科学院西部行动计划资助项目(KZCX2 - XB3 - 13 - 02)和科技部科技惠民计划资助项目 (2012CS610203)

作者简介: 甄庆,博士生,主要从事土壤水分溶质迁移研究, E-mail: zhenqing0227@163.com

通讯作者:张兴昌,研究员,博士生导师,主要从事环境保护与生态修复研究,E-mail: zhangxc@ms. iswc. ac. cn

引言

随着我国经济的发展,国家对能源的需求量也 相应增加,煤炭作为我国最主要的能源,其开采量和 消费量均居能源结构的首位^[1]。然而,煤炭的开采 在得到经济效益的同时也会对当地的生态环境产生 负面影响,特别是露天煤矿的开采会导致植被破坏、 地貌改变、十壤及地质结构永久彻底地改变和地表 及地下水文规律的破坏^[2]。同时露天矿开采过程 中也会产生大量的废弃物比如煤矸石和矿渣等,这 些废弃物经常会在排土场复垦中被填埋,上面覆盖 原表土等^[3-4]。晋陕蒙能源区是中国特大型煤炭化 工基地,其煤炭储量占全国1/3,为我国重要的能源 基地^[5]。该区总面积 5.44 × 10⁴ km², 主要的土壤类 型为风沙土、黄土,1/3的面积分布着础砂岩[6],同 时存在大面积的复垦重构土体。风沙土由于砂粒含 量高,土壤通气性好,几乎无毛管作用,故持水能力 差,养分含量低^[7]。黄土富含钙质,在降雨丰沛的 年份,钙质随雨水发生淋溶;在干旱的年份,随水淋 溶的钙质在土壤深层发生淀积,形成一层钙积 层^[8]。础砂岩成岩程度低、沙粒间胶结程度差、结 构强度低,导致无水坚硬如石,遇水则松软如泥土。 根据础砂岩的上覆情况可以分为:裸露础砂岩区、盖 土础砂岩区、盖沙础砂岩区^[9],从垂直剖面上为层 状结构土体。复垦重构土体多是在废弃物表面上覆 黄土。学者对矿区土壤入渗做了大量研究^[3,10-14], 研究表明水分是排土场植被恢复过程中的主要限制 因子之一。土壤入渗是降水、地表水、土壤水和地下 水相互转化过程中的重要环节^[3, 15],了解土壤入渗 特性对生态植被恢复建设具有非常重要的意义[16]。 特别是在土壤类型较多,结构复杂的晋陕蒙能源区。 本文通过土柱模拟试验的方式,研究该地区不同构 型土体的混合、分层结构以及复垦土壤土石混合结 构的入渗过程,为进一步深入研究该地区土壤水分运动变化规律提供理论依据,为矿区土地复垦提供合理的建议。

1 材料与方法

1.1 试验材料

试验点设在内蒙古自治区鄂尔多斯市准格尔旗 永利煤矿,供试土壤风沙土取自准格尔旗龙口镇 (111°22′07″E,40°01′19″N),黄土取自黑岱沟煤矿东 排土场(111°18′29″E,39°48′10″N),础砂岩和料姜石取 自准格尔旗暖水乡砒砂岩风景区内(110°33′18″E, 39°43′01″N),煤矸石取自永利煤矿洗煤厂(110°19′53″E, 39°41′52″N)。风沙土、黄土和砒砂岩采集后风干、碾 压、去杂后过1 cm 筛备用。料姜石和煤矸石密度分 别为:2.44、1.86 g/cm³,风干后选取粒径1.5~ 3.0 cm 样品备用。各样品的基本参数详见表1,其 中料姜石和煤矸石的含水率很低,试验中忽略不计。

表 1 供试材料物理性质 Tab. 1 Physical properties of tested soil %

/#+ >=+>		→n+∧		
供风	粘粒	粉粒(0.002~	砂粒	初始
材科	(<0.002 mm)	0.2 mm)	$(0.02 \sim 2 \text{ mm})$	百小平
风沙土	6. 767	7.055	86. 178	0.50
黄土	10. 224	15.296	74.480	3.00
砒砂岩	8.096	13.700	78.204	5.02

1.2 试验设计与方法

试验选取矿区常见的土体构型进行模拟。试验 设计分为纯土壤结构、土壤间分层结构、土壤间混合 添加结构、土石混合结构和排土场复垦土石混合分 层结构。风沙土、黄土和砒砂岩容重根据矿区常见 值设定,层状结构根据不同层分别按相应的土壤容 重填装。试验设计与处理详见表 2,其中容重为填 装后的值,试验重复 3 次。

处理编号	容重/(g·cm ⁻³)	处理	处理编号	处理
А	1.60	风沙土	A_1B_2	上层 50 cm A、下层 150 cm B
В	1.40	黄土	A_1C_2	上层 50 cm A、下层 150 cm C
С	1.40	砒砂岩	B_1C_2	上层 50 cm B、下层 150 cm C
AC	1.54	A 与 C 质量比 3:1混合	$B_1 C_2 D_3$	上层 50 cm B、中间 20 cm C、下层 130 cm D
BC	1.40	B 与 C 质量比 3:1混合	$B_1C_2E_3$	上层 50 cm B、中间 20 cm C、下层 130 cm E
D	1.61	黄土与料姜石质量比7:3混合	$B_1 C_2 E_3 C_4 E_5$	从上到下依次为 50 cm B、20 cm C、
Е	1.51	黄土与煤矸石质量比7:3混合		55 cm E 20 cm C 55 cm E

表 2 试验设计与处理 Tab. 2 Experimental design and treatment

试验装置由土柱和供水系统组成。土柱由内径 28.5 cm、高 220 cm 的有机玻璃管制成;供水系统主 要由内径 20 cm、高 60 cm 马氏瓶构成,外壁标有刻 度用于标定马氏瓶内水柱下降情况。 试验前先在土柱底部孔板上放置滤纸,防止土 壤颗粒流失,然后计算每层(10 cm)所需的土壤和 碎石质量,分层装入土柱,每次装土前将土壤表面打 毛。土柱表面也放置滤纸,防止表层土壤受到强烈 冲击,装土完成后自然沉降一周。试验过程中水头 均控制为10 cm,采取先密后疏的方式读取湿润锋 运移距离,并记录马氏瓶水位,直到土柱底部开始滴 水,由于条件限制夜间减少数据采集量。

采用 Excel 2010 和 SPSS 17.0 软件对试验数据 进行分析和处理。

2 结果与分析

2.1 不同处理湿润锋的变化

将实测的湿润锋迁移距离随时间的变化过程点 绘于图1。由图中可以看出,随着入渗过程的进行, 所有处理的土体湿润锋深度都随着时间的延长而增 大。湿润峰的变化速率可以反映土壤的输水能力. 变化速率越大说明土壤的输水能力越强[17]。在入 渗的初始阶段,湿润锋的变化速率较大,随着时间的 推移,湿润锋深度变化曲线变得较为平缓。由 图 1a、1b看出,同种均质土体湿润锋的变化速率从 大到小的顺序依次为:风沙土、黄土、砒砂岩,湿润锋 到达土柱底部的时间与湿润锋的变化速率呈现相同 的规律。在风沙土和黄土中添加25%的砒砂岩, 湿润锋的变化速率与纯风沙土和黄土相比均减 小。对于层状土,表层 50 cm 风沙土和黄土与均质 风沙土和黄土的入渗规律一致,深层150 cm 的黄 土和砒砂岩与对应的均质土体的湿润锋的变化速 率相似,而且在50 cm 处有明显的转折点。说明础 砂岩对湿润锋的推进有明显阻碍作用,可以相应 延长土体入渗所需的时间,这与摄晓燕等^[6]的研 究结果一致。

由图 1c 可以看出,纯黄土的湿润锋变化速率要 大于土石混合结构。在入渗的初始阶段,分层土体 表层 70 cm 湿润锋的变化速率略高于纯土石混合结 构土体,土石混合结构间的差异不显著。70 cm 作 为明显的转折点,湿润锋深度变化曲线开始趋缓。 整个入渗过程,湿润锋到达 200 cm 所需时间依次 为:D < E < B₁C₂D₃ < B₁C₂E₃C₄E₅ < B₁C₂E₃。表明在 土石混合结构中表层添加黄土和砒砂岩可以延长入 渗所需的时间。可能是由于长时间入渗,表层土壤 中的细小颗粒往下迁移,在土石混合分界层一定程 度堵塞了过水通道,导致湿润锋变化速率显著降低, 使得完成入渗所需的时间延长。

2.2 不同处理累积入渗量的变化

累积入渗量是一定时间段内通过单位土壤表面 入渗的累积水量,为便于比较,本研究中用入渗水深 (cm)表示^[18]。图2显示,各处理的累积入渗量均 随时间的延长呈增大趋势。图2a中,风沙土、黄土 和砒砂岩的累积入渗量增长趋于缓慢,完成入渗所 需的时间也相应的变长。完成整个入渗过程,黄土 的累积入渗量高于风沙土和砒砂岩的累积入渗量, 风沙土和砒砂岩之间的差异不显著。可能的原因 是:风沙土的容重高于黄土,土壤孔隙度小于黄土; 砒砂岩中砂粒含量较少,同时蒙脱石的含量高达 30%,蒙脱石是2:1型胀缩性粘土矿物,遇水崩解膨 胀,土壤孔隙度变小。相同的入渗时间内,砒砂岩的 添加可降低风沙土的累积入渗量,而对黄土累积入 渗量的影响不明显。

由图 2c 看出, 土石混合结构土体的累积入渗量 随时间的延长呈增大的趋势。除黄土之外, 在入渗 初始的 1 500 min 内, 同一入渗时间段内纯土石混合 结构的土体累积入渗量低于其他处理; 在 1 500 min 之后, 纯土石混合结构累积入渗量的变化速率高于 其他土石混合结构的处理; 2 500 min 之后, 累积入 渗量开始高于其他的土石混合处理。整个入渗过程 中, 纯黄土和黄土与料姜石混合结构的累积入渗量 高于其他处理, 可能的原因是: 黄土的容重最小, 总 孔隙度最大; 料姜石比煤矸石含有较大的密度, 相同 质量的料姜石所占的体积要小于煤矸石, 黄土与料

Fig. 2 Dynamic changes of cumulative infiltration in different layered soil depths

姜石混合结构的总孔隙度也较大。这与李卓^[19]、吴 军虎^[20]等的研究结果相似,即累积入渗量随容重的 增大而降低。

2.3 湿润锋推进距离与累积入渗量的关系

为了进一步研究湿润锋推进距离与累积入渗量 之间的关系,根据实测结果,对不同处理同一时刻实 测的湿润锋推进距离与累积入渗量进行回归分析, 发现可采用线性关系进行表达,即

$$I = aZ_{\rm f} + b \tag{1}$$

式中 I——累积入渗量, cm

Z₁——为湿润锋推进距离, cm

a、b——拟合参数^[21]

不同处理下的拟合参数见表 2。由表 2 可以看 出,不同处理间累积入渗量与湿润锋推进距离均呈 现良好的线性关系, R²均在 0.964 3 以上。在相同 条件下,黄土的 a 值略高于风沙土和砒砂岩;层状土 的 a 值略高于纯风沙土和纯砒砂岩。复杂的分层土 石混合结构拟合的 b 值高于其他处理,可能的原因 是其分层结构以及土石混合结构的不均一性和复杂 性,其具体原因有待于进一步的研究。

2.4 不同处理入渗率的变化

入渗率是单位时间内通过地表单位面积渗入到 土壤中的水量,反映了土壤的入渗性能,受土壤质 地、孔隙状况、供水强度等因素的影响^[22-23]。本研 究中,供水强度通过恒定水头保持一致。图3显示

	cumulative infiltration and wetting front
Tab. 2	2 Fitting parameters for relationship between
表 2	累积入渗量与湿润锋推进距离关系的拟合参数

处理编号	a	b	R^2
A	0.3044	0	0.9997
В	0. 339 7	0	0. 996 9
С	0.3025	0	0.9984
A_1B_2	0. 334 9	0	0.9987
A_1C_2	0. 319 0	0	0.9988
B_1C_2	0. 327 2	0	0.9988
AC	0.3002	0	0.9974
BC	0. 372 9	0	0.9947
D	0. 325 1	0	0.9865
$B_1C_2D_3$	0. 269 4	2. 220 1	0.9643
Е	0. 291 0	0	0.9879
$B_1C_2E_3$	0. 308 8	1.4516	0.9837
$B_{1}C_{2}E_{3}C_{4}E_{5}$	0.3178	0.6683	0.9971

了入渗的前 600 min 内,入渗率随时间的变化,从图 中可以看出,在整个入渗过程中,无论均质土体、分 层土体还是土石混合结构,各处理入渗率随入渗时 间的变化趋势相同。各处理土体的入渗率均随时间 的延长而逐渐减小,最后趋于稳定。

由图 3a 可以看出风沙土的入渗率最大, 础砂岩的入渗率最低, 黄土的入渗率介于两者之间。在风沙土、黄土中添加础砂岩后入渗率均降低。由图 3c 可以看出层状结构土体初始入渗率要高于土石混合结构, 层状结构土体湿润锋达到土柱底部时的平均

图 3 不同处理入渗率的动态变化

Fig. 3 Dynamic changes of infiltration rate in different treatments

入渗速率要低于相对应的纯土石混合结构土体,这 与湿润锋随时间的变化趋势一致。本研究中设置的 土石混合结构土体的平均入渗率显著低于黄土,其 主要原因是土石混合结构具有较大的容重。本研究 中的层状土结构在初始入渗阶段入渗速率较快,随 后速度逐渐减慢。这种结构对于降雨的利用具有重 要意义,在降雨之后地表水分可以快速入渗,减少地 表产流,而土壤水分进入土石混合结构层后入渗速 率减小,水分迁移变慢,可以减少水分向深层的流 失。

2.5 土壤水分入渗过程模拟

根据前人的研究,估算入渗率的公式可以分为 理论型和经验型两种。常见的 Green - Ampt 和 Philip 入渗模型属于理论模型,有一定的物理基础; Kostiakov 入渗模型和指数模型属于经验模型,指数 模型源于 Horton 模型。本研究选择 Philip 入渗模型 和 Kostiakov 模型模拟不同质地土壤的入渗过程。

Philip 入渗模型主要解决初始含水率均匀分布 的均质一维入渗问题[24],本研究中主要利用其对均 质土壤进行拟合, Philip 入渗模型公式为

$$I = St^{1/2} + At \tag{2}$$

式中 t----入渗历时,min A----稳渗率,cm/min Kostiakov 入渗模型公式为 $I = Kt^{1-\alpha}$ (3)式中 K——经验系数, cm/min α----经验入渗指数

根据实测累积入渗过程,利用 Origin 软件对

Tab. 3

Philip 入渗模型和 Kostiakov 入渗模型参数进行拟 合,拟合结果表明:利用 Philip 入渗模型拟合分层土 体入渗时稳定入渗率为负值,验证了其仅适合均质 土体入渗过程的模拟, Kostiakov 入渗模型对各处理 的拟合效果均较好,决定系数均在0.93以上。因此 在矿区,Kostiakov 入渗模型可以更好地描述不同构 型土体的累积入渗量随时间的变化趋势,这与党宏 字等^[25]对含有土石隔层土壤入渗特性的研究结果 相似。

Kostiakov 入渗模型中, K 值主要受入渗时土壤 结构和状况的影响,参数 K 是反映土壤入渗能力 的一个重要指标,它表示土壤入渗开始后第一个 单位时间(1 min)内单位面积上的平均入渗速率或 第一个单位时段末单位面积上的累积入渗量^[19]。 本研究显示分层土体拟合的 K 值要显著高于均质 土体,风沙土的值高于黄土和础砂岩,而且在风沙 土和黄土中添加砒砂岩可以降低K值。土石混合 结构拟合的 K 值介于砒砂岩和黄土的拟合值之 间,说明土石混合结构控制较高的容重其入渗性 能也会降低。

 α 反映了土壤入渗能力的衰减速度,值越大, 入渗能力衰减速度越快,反之则越慢,α值的大小 取决于由土体润湿而引起的土壤结构的改变^[19]。 由表3可看出层状结构土体的α值显著高于均质 土体,说明层状土体的入渗能力衰减速度较均质 土体快,因此上层为风沙土或者黄土、下层为砒砂 岩以及上层为黄土、下层设置容重较大的土石混 合结构土体开始入渗能力强,随后入渗能力快速 衰减。

表 3	不同处理的累积入渗量随时间变化的拟合结果	
Fitting results of y	variation of cumulative infiltration with time for different trea	atments

处理编号	Philip 入渗模型			Kostiakov 入渗模型		
	S	A	R^2	K	α	R^2
А	1. 992 0 ± 0. 015 1	0.0887 ±0.0011	0. 999 8	1.4739 ± 0.0343	0. 350 1 \pm 0. 004 5	0.9991
В	0.731 2 \pm 0.008 7	0.009 8 ± 0.000 2	0. 999 6	$0.\ 393\ 0\ \pm 0.\ 020\ 0$	0. 355 6 \pm 0. 006 8	0.9983
С	0. 426 4 \pm 0. 015 5	0.005 0 \pm 0.000 3	0. 995 9	0. 185 2 \pm 0. 009 7	0.3322 ± 0.0065	0.9983
A_1B_2	—	—	—	3. 779 7 ±0. 173 4	0.6185 ± 0.0070	0.9903
A_1C_2	—	—	—	3. 372 3 ± 0. 403 9	0.6798±0.0161	0.9342
B_1C_2	—	_	—	0.9422 ± 0.0373	0. 504 7 \pm 0. 005 3	0.9969
AC	1.5161 ± 0.0155	0.0715 ± 0.0009	0. 999 7	0. 951 3 ± 0. 019 6	0.3133 ± 0.0037	0.9995
BC	$0.\ 602\ 0 \pm 0.\ 022\ 2$	0.0131 ± 0.0005	0. 998 4	$0.\ 259\ 5\ \pm 0.\ 029\ 1$	0. 299 2 ± 0. 015 0	0.9957
D	$0.\ 530\ 6\ \pm 0.\ 036\ 2$	0.005 3 \pm 0.000 6	0.9877	0.2734 ± 0.0363	0. 363 3 \pm 0. 016 7	0.9911
$B_1C_2D_3$	—	—	—	2. 203 3 ± 0. 234 8	0.6462 ± 0.0134	0.9790
Е	0. 546 8 \pm 0. 027 5	0.0025 ± 0.0004	0. 989 8	0.3269 ± 0.0417	0. 406 4 \pm 0. 015 8	0.9911
$B_1C_2E_3$	—	—	—	1. 995 6 ± 0. 159 9	$0.\ 652\ 0\ \pm 0.\ 009\ 0$	0.9901
$B_{1}C_{2}E_{3}C_{4}E_{5}$	—	—	—	1.8619±0.1191	0.6242 ± 0.0077	0.9947

土石混合分层结构土体能使降雨快速入渗到一 定深度后向更深层次的入渗速度减慢,可以较大限 度地将水分截留在表层,为植物生长所利用,因此, 土石混合结构可为排土场的设计提供一定的理论基 础。

3 结论

(1) 础砂岩的入渗能力低于黄土和风沙土,黄 土和风沙土中分层填装或均匀混合添加础砂岩的方 式均可降低其入渗能力;黄土与料姜石以及黄土与 煤矸石的土石混合结构在土石质量比为7:3、容重 分别为 1.61 g/cm³和 1.54 g/cm³时拥有较低的入渗 能力。

(2) 入渗过程中湿润锋推进距离与累积入渗量 间的关系可采用线性函数进行表达;利用 Philip 入 渗模型和 Kostiakov 入渗模型均可以较好地拟合均 质土体的入渗过程, Kostiakov 入渗模型对层状结构 土体也有较好地拟合结果。

(3) 表层为 50 cm 黄土、中间 20 cm 砒砂岩、下 层设置容重较高的土石混合结构可以作为一种良好 的排土场重构结构,为土石混合结构水分运动提供 了一定的理论基础。

参考文献

- 汪应宏,郭达志,张海荣,等. 我国煤炭资源势的空间分布及其应用[J]. 自然资源学报, 2006, 21(2): 225-230.
 Wang Yinghong, Guo Dazhi, Zhang Hairong, et al. Spatial distribution and application of coal resource potential in China [J].
 Journal of Natural Resources, 2006, 21(2): 225-230. (in Chinese)
- 2 Keskin T, Makineci E. Some soil properties on coal mine spoils reclaimed with black locust (*Robinia pceudoacacia* L.) and umbrella pine (*Pinus pinea* L.) in Agacli-Istanbul[J]. Environmental Monitoring and Assessment, 2009, 159(1-4): 407 – 414.
- 3 付微,邵明安,黄明斌. 神府东胜煤田复垦区土壤入渗特性的试验研究[J]. 水土保持学报, 2008, 22(3): 14-17. Fu Wei,Shao Ming'an,Huang Mingbin. Experimental study of soil infiltration for reclamation land in Shenmu-Fugu Dongsheng coal mine area[J]. Journal of Soil and Water Conservation, 2008, 22(3): 14-17. (in Chinese)
- 4 孙泰森,白中科. 黄河中游地域露天煤矿排土场复垦方式特殊性的探讨[J]. 山西农业大学学报,2000,20(4):383-385. Sun Taisen,Bai Zhongke. The approach to the model of recultivation of open colliery's soil-stacking site in the area of middle reaches of Yellow River[J]. Journal of Shanxi Agricultural University, 2000, 20(4): 383-385. (in Chinese)
- 5 王文龙. 晋陕蒙地区的生态环境特征及其研究[J]. 水土保持通报, 1997, 17(增刊1): 90-93. Wang Wenlong. The eco-environment characteristics of Jin-Shaan-Meng region and the research significance in science [J]. Bulletin of Soil and Water Conservation, 1997, 17(Supp.1): 90-93. (in Chinese)
- 6 摄晓燕,张兴昌,魏孝荣. 适量砒砂岩改良风沙土的吸水和保水特性[J]. 农业工程学报, 2014, 30(14): 115-123. She Xiaoyan, Zhang Xingchang, Wei Xiaorong. Improvement of water absorbing and holding capacities of sandy soil by appropriate amount of soft rock[J]. Transactions of the CSAE, 2014, 30(14): 115-123. (in Chinese)
- 7 王志,彭茹燕,王蕾,等. 毛乌素沙地南缘改良与利用风沙土性质研究[J]. 水土保持学报, 2006, 20(2): 14-16, 21. Wang Zhi, Peng Ruyan, Wang Lei, et al. Studies on soil properties of aeolian sandy land improvement and utilization in south edge of Musu desert[J]. Journal of Soil and Water Conservation, 2006, 20(2): 14-16, 21. (in Chinese)
- 8 朱元骏,邵明安. 黄土高原水蚀风蚀交错带小流域坡面表土砾石空间分布[J]. 中国科学:D 辑, 2008, 38(3): 375 383. Zhu Yuanjun, Shao Ming'an. Spatial distribution of surface rock fragment on hill-slopes in a small catchment in wind-water erosion crisscross region of the Loess Plateau[J], Science in China: Series D, 2008, 38(3): 375 - 383. (in Chinese)
- 9 王愿昌,吴永红,寇权,等. 础砂岩分布范围界定与类型区划分[J]. 中国水土保持科学, 2007, 5(1): 14-18. Wang Yuanchang, Wu Yonghong, Kou Quan, et al. Definition of arsenic rock zone borderline and its classification[J]. Science of Soil and Water Conservation, 2007, 5(1): 14-18. (in Chinese)
- 10 臧荫桐,丁国栋,高永,等. 采煤沉陷对风沙区土壤非饱和水分入渗的影响[J]. 水科学进展, 2012, 23(6): 757-767. Zang Yintong, Ding Guodong, Gao Yong, et al. Effects of coal mining subsidence on infiltration into unsaturated soils in sand drift areas[J]. Advances in Water Science, 2012, 23(6): 757-767. (in Chinese)
- 11 邹慧,毕银丽,金晶晶,等. 采煤沉陷对植被土壤容重和水分入渗规律的影响[J]. 煤炭科学技术, 2013, 41(3): 125-128. Zou Hui, Bi Yinli, Jin Jingjing, et al. Mining subsidence affected to soil volume-weight and water infiltration law of different vegetation type[J]. Coal Science and Technology, 2013, 41(3): 125-128. (in Chinese)
- 12 温明霞,邵明安,周蓓蓓. 马家塔露天煤矿复垦区不同土地利用类型的土壤水分入渗过程研究[J]. 水土保持研究, 2009, 16(4):170-173.
 Wern Mingring Shape Mingring Theory Bailtonia Study on soil water infiltration processes in different land use turns in Maiinte real-simed

Wen Mingxia, Shao Ming'an, Zhou Beibei. Study on soil water infiltration processes in different land use types in Majiata reclaimed regions [J]. Research of Soil and Water Conservation, 2009, 16(4): 170 – 173. (in Chinese)

13 倪含斌,张丽萍. 神东矿区堆积弃土坡地入渗规律试验研究[J]. 水土保持学报, 2007, 21(3): 28-31.
 Ni Hanbin, Zhang Liping. Experimental study on slope infiltration process in abandoned soils in Shen-Dong mine region[J].
 Journal of Soil and Water Conservation, 2007, 21(3): 28-31. (in Chinese)

- 14 赵骍,景峰. 阎家沟煤矿区弃土坡模拟降雨入渗规律研究[J]. 山西水土保持科技, 2008(3): 17-19. Zhao Yi, Jing Feng. Study on simulation rainfall infiltration law in spoil from Yanjiagou mine area [J]. Soil and Water Conservation Science and Technology in Shanxi, 2008(3): 17-19. (in Chinese)
- 15 杨艳芬,王全九,曾辰,等. 土石混合介质水分入渗特性试验研究[J]. 水土保持学报, 2009, 23(5): 87-90, 132.

Yang Yanfen, Wang Quanjiu, Zeng Chen, et al. Experimental research on water infiltration characteristics of stony-soil medium [J]. Journal of Soil and Water Conservation, 2009, 23(5): 87-90, 132. (in Chinese)

- 16 刘晓丽,马理辉,杨荣慧,等. 黄土半干旱区枣林深层土壤水分消耗特征[J]. 农业机械学报, 2014,45(12): 139-145.
 Liu Xiaoli, Ma Lihui, Yang Ronghui, et al. Deep soil water depletion characteristic of jujube plantation in loess semiarid region
 [J]. Transactions of the Chinese Society for Agricultural Machinery, 2014,45(12): 139-145. (in Chinese)
- 17 Hillel Daniel. Applications of soil physics [M]. San Diego, CA: Academic Press, 1998.
- 18 刘建国,王洪涛,聂永丰. 多孔介质非饱和导水率预测的分形模型[J]. 水科学进展, 2004, 15(3): 269-275.
 Liu Jianguo, Wang Hongtao, Nie Yongfeng. Fractal model for predicting of unsaturated hydraulic conductivity of porous media
 [J]. Advance in Water Science, 2004, 15(3): 269-275. (in Chinese)
- 19 李卓,吴普特,冯浩,等. 容重对土壤水分入渗能力影响模拟试验[J]. 农业工程学报, 2009, 25(6): 40-45.
 Li Zhuo, Wu Pute, Feng Hao, et al. Simulated experiment on effect of soil bulk density on soil infiltration capacity [J].
 Transactions of the CSAE, 2009, 25(6): 40-45. (in Chinese)
- 20 吴军虎,张铁钢,赵伟,等. 容重对不同有机质含量土壤水分入渗特性的影响[J]. 水土保持学报, 2013, 27(3): 63-67, 268.

Wu Junhu, Zhang Tiegang, Zhao Wei, et al. Influence of soil bulk density on soil water infiltration characteristics under different soil organic matter contents [J]. Journal of Soil and Water Conservation, 2013, 27(3): 63-67, 268. (in Chinese)

- 21 刘春成,李毅,任鑫,等.四种入渗模型对斥水土壤入渗规律的适用性[J].农业工程学报,2011,27(5):62-67.
- Liu Chuncheng, Li Yi, Ren Xin, et al. Applicability of four infiltration models to infiltration characteristics of water repellent soils [J]. Transactions of the CSAE, 2011, 27(5): 62-67. (in Chinese)
- 22 刘月梅,张兴昌. EN-1 对黄土性固化土水分垂直入渗特征的影响[J]. 农业机械学报, 2012, 43(11): 65-73. Liu Yuemei, Zhang Xingchang. Effects of EN-1 soil stabilizer on water vertical infiltration characteristics for loess stabilized soil [J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(11): 65-73. (in Chinese)
- 23 佘冬立,郑加兴,刘营营,等. 围垦年限和土壤容重对海涂土壤水分运动参数的影响[J]. 农业机械学报, 2015,46(2): 120-125.

She Dongli, Zheng Jiaxing, Liu Yingying, et al. Effects of land reclamation time and bulk density on soil hydraulic parameters in the coastal reclamation region [J]. Transactions of the Chinese Society for Agricultural Machinery, 2015,46(2): 120-125. (in Chinese)

- 24 邵明安,王全九,黄明斌. 土壤物理学[M]. 北京: 高等教育出版社, 2006.
- 25 党宏宇,陈洪松,邵明安. 喀斯特地区不同层次土石混合介质对土壤水分入渗过程的影响[J]. 农业工程学报, 2012, 28(8):38-43.

Dang Hongyu, Chen Hongsong, Shao Ming'an. Effects of laminated rock fragments on soil infiltration processes in karst regions [J]. Transactions of the CSAE, 2012, 28(8): 38-43. (in Chinese)

(上接第103页)

- 14 Karmakar S, Mujumdar P P. Grey fuzzy optimization model for water quality management of a river system [J]. Advances in Water Resources, 2006, 29(7): 1088 - 1105.
- 15 解苗苗,王文圣,王红芳.灰色自记忆模型在年径流预测中的应用[J].水电能源科学,2007,25(2):8-10. Xie Miaomiao, Wang Wensheng, Wang Hongfang. Comprehensive assessment of river health complex system based on Elman network model [J]. Water Resources and Power, 2007, 25(2):8-10. (in Chinese)
- 16 王文圣,张翔,金菊良,等.水文学不确定性分析方法[M].北京:科学出版社, 2011: 261-263.
- 17 黎育红,陈玥,周建中,等. 熵权法并联组合建模在径流预测中的应用[J]. 水电能源科学, 2012, 30(2):13-16.
 Li Yuhong, Chen Yue, Zhou Jianzhong, et al. Entropy-based parallel combinational model and its application in runoff prediction [J]. Water Resources and Power, 2012, 30(2):13-16. (in Chinese)
- 18 王文圣,李跃清,金菊良.基于集对原理的水文相关分析[J].四川大学学报:工程科学版, 2009,41(2):1-5. Wang Wensheng, Li Yueqing, Jin Juliang. Relation analysis of hydrological variables based on set pair principle [J]. Journal of Sichuan University: Engineering Science Edition, 2009, 41(2):1-5. (in Chinese)