doi:10.6041/j.issn.1000-1298.2013.09.044

基于伪刚体模型的多层 LEMs 建模与仿真*

邱丽芳 楚红岩 杨德斌 王 涛

(北京科技大学机械工程学院,北京 100083)

摘要:结合刚性机构分类思想和刚体代替综合法,设计了一多层 LEMs 机构。基于柔顺机构伪刚体模型及 LET 铰链等效弹簧刚度模型,对多层 LEMs 进行分析,推导出该机构的输入载荷和输出位移量的理论计算公式,并用该理论计算公式对设计实例进行计算。同时对该设计实例进行有限元仿真分析,两种方法所得结果基本一致,表明理论分析的正确性和该设计的可行性。

关键词: 多层 LEMs 机构 LET 铰链 伪刚体模型 有限元分析 中图分类号: TH122 文献标识码: A 文章编号: 1000-1298(2013)09-0255-06

Modeling and Simulation of Multi-layered Lamina Emergent Mechanisms Based on Pseudo-rigid-body

Qiu Lifang Chu Hongyan Yang Debin Wang Tao

(School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China)

Abstract: A multi-layered lamina emergent mechanism configuration was designed, combined with classification scheme and rigid-body replacement synthesis design approach. Based on pseudo-rigid-body model and analogous linear coil spring model of lamina emergent torsional (LET) joint, the force-deflection relationship was derived. With the aid of finite element analysis, the results of the two methods were compared and the causes of error were analyzed. The results obtained by the two methods were approximated. This indicated that the analysis and design methods were correct and feasible.

Key words: Multi-layered lamina emergent mechanisms Lamina emergent torsional joint Pseudo-rigidbody model Finite element analysis

引言

用尽可能少量的构件实现复杂动作过程是现代 机构学中重要的创新思想,采用非刚性构件来完成 某些工艺动作,用尽可能小的占用空间实现复杂精 密的运动,是现代机械装备向"重大精尖"或"微小 精密"等方向发展的趋势,空间成本已经成为机构 创新设计要考虑的重要要素之一^[1]。薄片材料制 作的柔顺机构(Lamina emergent mechanisms,LEMs) 是在同一材料平面内加工完成,并可实现在平面外 运动的一类新型机构^[2~3]。 虽然 LEMs 机构有市场需求和性能优势,但设 计者很难把它运用到设计当中。这是因为 LEMs 柔 顺机构具有与刚性机构不同的功能特性,例如,柔顺 机构通过柔顺元素的变形储存能量,而刚性机构如 果没有弹簧零件则不能储存能量;柔顺机构的力-变 形有很高的耦合性,而刚性机构的运动特性在材料 刚度足够的情况下,是不受材料影响的^[4]。本文结 合 Artobolevsky 提出的刚性机构分类思想^[5]和刚体 代替综合法(即先设计满足功能要求的刚性机构, 然后把它转化成柔顺机构的方法)^[4,6,7],设计一多 层 LEMs 机构。同时,基于柔顺机构伪刚体模型^[8]

收稿日期: 2012-09-13 修回日期: 2012-10-24

*国家自然科学基金资助项目(51275034)

通讯作者:杨德斌,教授,博士生导师,主要从事机械设备状态评价及无线传感器研究,E-mail: ydb@ ustb. edu. en

作者简介:邱丽芳,教授,主要从事机械设计及理论、柔顺机构研究,E-mail: qlf@ustb.edu.cn

及 LET(Lamina emergent torsional) 铰链等效弹簧刚 度模型^[2~3],对该机构进行分析,对多层柔顺机构的 设计进行探索,为该机构的进一步理论研究和广泛 应用奠定基础。

1 多层 LEMs 机构的设计

多层 LEMs 机构^[9]是由多个单层 LEMs 组合而 成的机构,能够大大减少构件数量、降低空间成本。 当单层 LEMs 机构不能满足设计要求时,往往可将 其设计成多层 LEMs 机构,例如,当单层机构的柔性 铰链的运动受限时,可以设计成多层来扩大其运动 范围;或当单层机构在运动中产生构件重叠时,也可 设计成多层。

增加层数可以增加机构功能,但结构将复杂,而 单层的 LEMs 加工简单、经济,因此设计者应权衡两 者来选择合适的层数。本文考虑结构复杂性以及运 动范围,设计成 3 层的 LEMs 机构。

根据文献[6],以现有刚性机构产品为对象,通 过逆向分析得到组合刚性机构,按照刚体代替综合 法把刚性机构转变成 LEMs 柔顺机构。其方法有两 种:直接用相应的柔顺片段代替刚性片段;先把复杂 的刚性机构分解成功能简单的刚性机构,然后用具 有相似功能的柔顺机构代替刚性机构,如图1所示。 以奥迪 A4 的水杯固定器(图 2a)为例,按照图1所 示方法进行研究,发现适合转化为柔顺机构的刚性 机构有两种,其机构简图如图 2b、2c 所示,其中输入 为移动的刚性机构,更加适合于转化成 LEMs 机构。 本文着重研究这种机构,将其设计为基于位移驱动 的 LEMs 机构,并进行分析。

根据图 1 的设计思路,图 2c 所示刚性机构的柔 顺机构模型设计如图 3 所示。由于动力构件中靠近

平行四边形机构的 LET 铰链扭转角非常微小,故建 立柔顺机构模型时将该铰链忽略。动力构件直接固 定在平行四边形机构上,执行构件通过移动副(半 铰链)与平行四边形机构连接。当给滑块施加水平 拉力时,执行构件弹起离开平面,LET 铰链产生较大 变形,同时机构存储变形能;将水杯放入后,变形能 释放,使得水杯在受到水平方向约束时,也受到向下 按压的作用力。当需取出水杯时,再次输入载荷使 执行构件弹起,取出水杯后,停止输入载荷,变形能 释放,机构自动恢复平面状态。

图 2 奥迪 A4 水杯固定器及机构简图 Fig. 2 Audi A4 cup holder and its schematic diagrams (a) 奥迪 A4 的水杯固定器 (b) 机械简图(输入为转动) (c) 机构简图(输入为移动)

图 3 柔顺机构模型

该机构主要参数如图 4 所示,图中 B = 290 mm, $B_1 = 260$ mm, $L_1 = 1$ 028 mm, $L_2 = 300$ mm, $L_3 = 408$ mm, $L_4 = 300$ mm, t = 2 mm, a = 20 mm, b = 248 mm, c = 10 mm。LET 外铰链和 LET 内铰链的参数及数值如图 5、表 1 所示。采用厚度为 2 mm 的ABS 工程塑料,其优势在于弹性较大,价格低廉,易于加工。主要加工方法有:切割、粘贴、拼接、压模等。按照平面精雕加工后装配。为了实现机构的执 行功能,执行构件选用普通钢材。ABS 工程塑料的 基本性能参数为:密度 $\rho = 1.1 \text{ g/cm}^3$,弹性模量 E = 2.2 GPa,泊松比 $\mu = 0.34$,屈服强度 $\sigma_s = 50 \text{ MPa}_{\circ}$ 。

Fig. 4 Sketch plan of main parameters of multi-layered LEMs

Fig. 5 Sketch plans of LET joints (a) LET 外铰链 (b) LET 内铰链

表1 LET 铰链尺寸 Tab.1 LET dimensions

	r -	Гаb. 1	LET din	nensions		mm
参数		$L_{\rm TW}$	$L_{\rm BL}$	L_{TL}	$L_{\rm BW}$	L
平行四 边形 机构	外铰链1	5	30	80	10	100
	外铰链2	10	30	80	10	100
	外铰链3	5	30	80	10	100
	外铰链4	11	30	80	10	100
执行构件内铰链5 12		12	20	130	30	290
滑块处外铰链6		10	25	80	10	100

2 理论建模与分析

将图 3 所示机构看作是集中柔度全柔性机构 (Lumped compliance compliant mechanism, LCCM)^[10],则建立其伪刚体模型如图 6 所示,则当 滑块 A 处输入水平力 F_{in} 时,LET 铰链有较大扭转变 形,执行构件输出角位移 θ'_2 ,从而 B 处产生向上的 运动。与短臂柔铰类似,可以把特征铰链安放在 LET 铰链总长度的中点,因为大变形仅发生在比杆 件短得多的 LET 铰链处。图 6 所示机构是由滑块 机构、四杆机构和执行构件组合而成,故它的虚功方 程可基于四杆机构、滑块机构的虚功方程推出。

图 6 多层 LEMs 机构伪刚体模型 Fig. 6 Pseudo-rigid-body model of multi-layered LEMs

2.1 滑块机构

滑块机构(动力构件)伪刚体模型如图 7a, 虚功 为

$$\delta W = F_{out} \cdot \delta z_2 + F_{in} \cdot \delta z_4 + F_s \cdot \delta z_4 + T_1 \cdot \delta \psi_1 + T_2 \cdot \delta \psi_2 + T_3 \cdot \delta \psi_3$$
(1)
$$F_{in} = X_4 i$$

- **F**_{in}——作用在滑块上的水平力
- F_{out}——滑块机构连杆和连架杆(图6中虚 线所示)连接处铰链输出的力
- f_k ——弹簧力,关于 $\psi_4 = r_1 r_{10}$ 的函数(r_{10} 是 滑块的初始位置)
- δz_i ——虚位移,用链式微分法对位移矢量 z_i 求导得出

 θ_2 在 90°~180°之间, θ_3 在 270°~360°之间。

铰链 *i* 处扭簧的虚功可由铰链处的力矩 T_i 和 相应的 Lagrangian 坐标 ψ_i 确定,对于含有弹性常数 为 K_i 的线性扭簧的伪刚体模型, $T_i = -K_i\psi_i$, 对于在 弹性变形范围内的一组 LET 铰链, $K_i = k_{eqi}$ ^[3], 即 $T_i = -k_{eqi}\psi_i$; 铰链处坐标公式为 $\psi_1 = \theta_2 - \theta_{20}$, $\psi_2 = (\theta_2 - \theta_{20}) - (\theta_3 - \theta_{30})$, $\psi_3 = \theta_3 - \theta_{30}$ 。 $\delta\psi_i$ 为铰链 *i* 扭转角度的增量。

将各参数代入式(1),并选择广义坐标 q 为 θ_2 , 得到

$$\delta W = (A' + g_{32}B')\delta\theta_2 \tag{2}$$

其中 $A' = (-r_2X_2 - r_2X_4 + r_2F_s)\sin\theta_2 +$

$$r_2 Y_2 \cos\theta_2 + T_1 + T_2 \tag{3}$$

$$B' = (-r_3 X_4 + r_3 F_s) \sin \theta_3 - T_2 + T_3 \qquad (4)$$

$$g_{32} = \frac{\delta\theta_3}{\delta\theta_2} = \frac{r_2 \cos\theta_2}{-r_3 \cos\theta_3} \tag{5}$$

根据虚功原理($\delta W = 0$),由式(2)~(5)得到方程 { $r_3 \cos\theta_3 [(-r_2X_2 - r_2X_4 + r_2F_s)\sin\theta_2 + r_2Y_2\cos\theta_2 + T_1 + T_2] - r_2\cos\theta_2 [(-r_3X_4 + r_3F_s)\sin\theta_3 - T_2 + T_3]$ } $\delta\theta_2 = 0$ (6)

$${}_{2}\sin\theta_{2} + r_{3}\sin\theta_{3} = e \tag{7}$$

$$r_2 \cos\theta_2 + r_3 \cos\theta_3 = r_1 \tag{8}$$

图 7 多层 LEMs 机构各组成部分的伪刚体模型 Fig. 7 Pseudo-rigid-body model of every parts of multi-layered LEMs (a) 滑块机构 (b) 四边形机构 (c) 执行构件

2.2 平行四边形机构

바라

平行四边行机构伪刚体模型如图 7b, 虚功为

$$\delta W' = F'_{\text{out}} \cdot \delta z'_2 + (-F_{\text{out}}) \cdot \delta z'_4 + T'_1 \cdot \delta \psi'_1 + T'_2 \cdot \delta \psi'_2 + T'_3 \cdot \delta \psi'_3 + T'_4 \cdot \delta \psi'_4$$
(9)

其中
$$-F_{out} = X_4 \mathbf{i} + Y_4 \mathbf{j}$$

 $X'_4 = F_{out} \sin\theta_2 \quad Y'_4 = -F_{out} \cos\theta_2$
 $F'_{out} = X'_2 \mathbf{i} + Y'_2 \mathbf{j}$
 $X'_2 = -F'_{out} \sin\theta''_2 \quad Y'_2 = F'_{out} \cos\theta''_2$
 $z'_2 = (r'_2 \cos\theta'_2 - r'_3) \mathbf{i} + r'_2 \sin\theta'_2 \mathbf{j}$
 $z'_4 = (a'_4 \cos\theta'_2 + b'_4 \sin\theta'_2) \mathbf{i} + (a'_4 \sin\theta'_2 - b'_4 \cos\theta'_2) \mathbf{j}$
 $T'_i = -k'_{eqi} (\theta'_2 - \theta'_{20})$
式中 $-F_{out}$ —由滑块机构传递到平行四边形机构

V/ 5

$$\begin{split} \theta_4' &= \theta_2'\,, \theta_3' = 0\,, 故\,\psi_i' = \theta_2' - \theta_{20}'(\,i=1\,,2\,,3\,,4\,)_\circ \;\; \theta_2' \\ & \pm \,90^\circ \sim \!180^\circ \! \gtrsim \! \mathrm{il}_\circ \end{split}$$

将各参数代入式(9),应用虚功原理得到

$$\begin{bmatrix} (-a_4'X_4' + b_4'Y_4' - r_2'X_2')\sin\theta_2' + \\ (b_4'X_4' + a_4'Y_4' + r_2'Y_2')\cos\theta_2' + \\ T_1' + T_2' + T_3' + T_4' \end{bmatrix} \delta\theta_2' = 0$$
(10)

由平行四边形机构和滑块机构的几何位置关系 得到

$$\theta_2' - \theta_2 = \tan\left(\frac{b_4'}{a_4'}\right) \tag{11}$$

2.3 执行构件

其中

执行构件伪刚体模型如图 7c, 虚功为

$$\delta \boldsymbol{W}'' = -\boldsymbol{F}'_{\text{out}} \cdot \delta \boldsymbol{z}''_2 + \boldsymbol{T}''_1 \cdot \delta \boldsymbol{\psi}''_1 \qquad (12)$$

其中
$$-F'_{out} = X''_{2}i + Y''_{2}j$$

 $X''_{2} = F'_{out}\sin\theta''_{2} Y''_{2} = -F'_{out}\cos\theta''_{2}$
 $z''_{2} = z'_{2} = (r'_{2}\cos\theta'_{2} - r'_{3})i + r'_{2}\sin\theta'_{3}j$
 $\psi''_{1} = \theta''_{2} - \theta''_{20} T''_{1} = -k''_{eq}(\theta''_{2} - \theta''_{20})$
式中 $-F'_{out}$ 由平行四边形机构传递到执行构件
的力; $-F'_{out} = F'_{out} = D D D c f H D$
 $\delta z''_{i}$ 虚位移,用链式微分法对位移矢量 z''_{i}
求导得出
将各参数代入式(12)中,得到
 $\delta W'' = (-r'X''_{2}\sin\theta'_{2} + r'_{2}Y''_{2}\cos\theta'_{2})\delta\theta'_{2} + T''_{1}\delta\theta''_{2}$
(13)
由执行构件的几何位置关系得出
 $r'_{2}\sin\theta'_{2} = r''_{2}\sin(\pi - \theta''_{2})$ (14)
 $-r'_{2}\cos\theta'_{2} + r'_{3} + r''_{1} = r''_{2}\cos(\pi - \theta''_{2})$ (15)
联立式(14)、(15)得到
 $-r'_{2}\cos\theta'_{2} + r'_{3} + r''_{1} + r'_{2}\sin\theta'_{2}\cot\theta''_{2} = 0$ (16)
式(16)为非线性方程,求微分得到
 $\frac{d\theta'_{2}}{d\theta''_{2}} = \frac{r'_{2}\sin\theta'_{2}(1 + \cot^{2}\theta''_{2})}{r'_{2}\cos\theta'_{2}\cot\theta''_{2} + r''_{2}\sin\theta'_{2}}$ (17)
将式(17)代入式(13),应用虚功原理得到
 $[(-r'_{2}X''_{2}\sin\theta'_{2} + r'_{2}Y''_{2}\cos\theta'_{2}) \cdot \frac{r'_{2}\sin\theta'_{2}(1 + \cot^{2}\theta''_{2})}{r'_{2}\cos\theta'_{2}\cot\theta''_{2} + r''_{2}\sin\theta'_{2}} + T''_{1}]\delta\theta''_{2} = 0$ (18)
综合式(6)、(10)和(18)得到多层 LEMs 机构
的虚功方程,结果可表达为
 $A\delta\theta_{2} + B\delta\theta'_{2} + C\delta\theta''_{2} = 0$ (19)

$$(b'_{4}X'_{4} + a'_{4}Y'_{4} + r'_{2}Y'_{2})\cos\theta'_{2} + T'_{1} + T'_{2} + T'_{3} + T'_{4}$$
(21)

$$C = (-r'_{2}X''_{2}\sin\theta'_{2} + r'_{2}Y''_{2}\cos\theta'_{2}) \cdot \frac{r'_{2}\sin\theta'_{2}(1 + \cot^{2}\theta''_{2})}{r'_{2}\cos\theta'_{2}\cot\theta''_{2} + r'_{2}\sin\theta'_{2}} + T''_{1}$$
(22)

 $A = r_{3}\cos\theta_{3} \left[\left(-r_{2}X_{2} - r_{2}X_{4} + r_{2}F_{s} \right) \sin\theta_{2} + \right]$

 $r_2 \cos\theta_2 \left[\left(-r_3 X_4 + r_3 F_5 \right) \sin\theta_3 - T_2 + T_3 \right]$ (20)

 $r_2 Y_2 \cos \theta_2 + T_1 + T_2] -$

 $B = (-a_4'X_4' + b_4'Y_4' - r_2'X_2')\sin\theta_2' +$

联立虚功方程(19)~(22)和机构几何位置方

程(7)、(8)、(11)、(14)、(15),可计算得到滑块上 输入力 F_{in}与执行构件输出角 θ', 的关系。鉴于公式

的复杂性,选用 Matlab 数学软件辅助计算。理论计 算结果列于表2。

Tab. 2 Comparison of two different methods													
伪刚体模型	ANSYS 仿真	误差	输入力	伪刚体模型	ANSYS 仿真	误差							
扭转角 θ''_/(°)	扭转角 $\hat{\theta}_2''/(\circ)$	Δ /%	$F_{\rm in}/N$	扭转角 θ''_/(°)	扭转角 $\hat{ heta_2''}/(\circ)$	$\Delta / \%$							
0	0	0	13	6.65	6.88	3.34							
2.80	2.65	- 5. 66	14	7.10	7.41	4.18							
3.26	3.18	- 2. 52	15	7.74	7.94	2. 52							
3.70	3.71	0. 27	16	8.36	8.47	1.30							
4.17	4.24	1.65	17	9.01	9.00	-0.11							
4.65	4.77	2. 52	18	9.72	9.53	- 1. 99							
5.12	5.29	3. 21	19	10. 50	10.06	-4.37							
5.62	5.82	3.43	20	11.49	10. 59	- 8.50							
6.13	6.35	3.46											
	伪刚体模型 扭转角 θ ^o ₂ /(°) 0 2.80 3.26 3.70 4.17 4.65 5.12 5.62 6.13	拍動, 2伪刚体模型ANSYS 仿真扭转角 $\theta_2''/(\circ)$ 扭转角 $\hat{\theta}_2''/(\circ)$ 002.802.653.263.183.703.714.174.244.654.775.125.295.625.826.136.35	内刚体模型ANSYS 仿真误差扭转角 $\theta'_2/(^\circ)$ 扭转角 $\hat{\theta}'_2/(^\circ)$ $\Delta/\%$ 0002. 802. 65 $-5. 66$ 3. 263. 18 $-2. 52$ 3. 703. 710. 274. 174. 241. 654. 654. 772. 525. 125. 293. 215. 625. 823. 436. 136. 353. 46	Tab. 2 Comparison of two unference $bgma k \mbox{\ensuremath{\beta}} \ensur$	$Hab.2$ Comparison of two unterest methods $bgma k \[mathcack] 2/(\circ)$ $ANSYS \[bg] \[mathcack] 2 \[mathc$	$Hab.2$ Comparison of two unferent methods $hab{hab{fab{rar}}{2}}$ ANSYS $hab{fab{rar}{2}}$ $Hab{hab{rar}{2}}$ $hab{hab{rar}{2}}$ ANSYS $hab{fab{rar}{2}}$ $hab{hab{rar}{2}}$ $hab{hab{rar}{2}}$ $hab{hab{rar}{2}}$ $hab{hab{rar}{2}}$ $hab{hab{rar}{2}}$ $hab{hab{rar}{2}}$ $hab{rar}{2}$ $hab{rar$	$Hab.2$ Comparison of two unreferent methods $hab ke 2$ $ANSYS fb \bar{1}$ $k 2$ $k 3 h h h h h h h h h h h h h h h h h h $						

表 2 两种方法分析结果

有限元仿真 3

为了分析验证该机构的载荷与位移量公式推导 的正确性,在ANSYS Workbench 中创建实体模型.

施加相同载荷并用有限元法仿真分析。该机构模型 建立、网格划分、载荷施加、位移云图和变形云图如 图8所示。

图 8 多层 LEMs 机构有限元仿真结果 Fig. 8 FEM results of multi-layered LEMs (a) 模型建立及网格划分 (b) 位移云图 (c) 变形云图

结果分析

理论计算和仿真分析的结果见表4,理论计算 值 θ_2'' 与仿真值 $\hat{\theta}_2''$ 相对误差计算式为 $\Delta = \frac{\theta_2'' - \theta_2''}{\hat{\theta}_1''} \times$

100%;输入力在5~20N时,最大误差的绝对值为 8.50%。由表4得到输入载荷-输出扭转角关系曲 线如图9所示。

由图9可知,理论分析和仿真分析所得结果基 本一致,证明了理论分析方法是正确的。但两条曲 线没有完全吻合,说明这些结果存在一定的误差,影 响误差的主要原因有:

(1) 等效弹簧刚度模型是在只受转矩的条件下 建立的,因为铰链受转矩发生大的角度变形是我们 所期望的情况,但 LET 铰链实际受耦合载荷(包括 转矩、平面内拉(压)力、垂直于平面的分力)的作

用,故理论和实际情况存在误差。

(2) 分析时,以初始状态结构参数为标准,没有 考虑受力变形后实际结构参数的改变,如:LET 铰链 的转动中心漂移、杆件发生微小变形、刚化效应等。

(3) 其它模型简化所引起的误差,如因为弹簧 力f_k分析的复杂性,故建立模型将其简化等。

5 结束语

结合刚性机构分类思想和刚体代替综合法,对 LEMs 柔顺机构的设计进行了研究,设计了一多层 LEMs 机构。基于柔顺机构伪刚体模型及 LET 铰链 等效弹簧刚度模型,建立了该多层 LEMs 机构的伪 刚体模型,根据虚功原理推导出了其输入载荷和输 出位移量的理论计算公式,并对设计实例进行了分 析;同时,用有限元方法对设计实例进行了仿真分 析,两种方法所得结果基本一致,表明该机构所运用 的基本原理和分析模型合适,设计与分析过程正确。

- 参考文献
- 李瑞琴,邹慧君. 现代机构的创新设计理论与方法研究[J]. 机械科学与技术,2003,22(1):83~85.
 Li Ruiqin, Zou Huijun. Five methods for modern mechanism creative design[J]. Mechanical Science and Technology, 2003,22 (1):83~85. (in Chinese)
- 2 Jacobsen J O, Howell L L, Magleby S P. Fundamental components for lamina emergent mechanisms [C]. Proceedings of the 2007 ASME International Mechanical Engineering Congress and Exposition, IMECE2007-42311.
- 3 Jacobsen J O, Winder B G, Howell L L, et al. Lamina emergent mechanisms and their basic elements [J]. ASME Journal of Mechanisms and Robotics, 2010, 2(1);011003.
- 4 Olsen B M. A design framework that employs a classification scheme and library for compliant mechanism design [D]. Provo: Brigham Young University, 2010.
- 5 Artobolevsky I I. Mechanisms in modern engineering design: a handbook for engineers, designers, and inventors [M]. Moscow: Mir Publishers, 1975:1 ~ 5.
- 6 Berglund M D, Magleby S P, Howell L L. Design rules for selecting and designing compliant mechanisms for rigid-body replacement synthesis[C] // Proceedings of the 2000 ASME International Design Engineering Technical Conferences, 2000.
- 7 Howell L L, Midha A. Loop-closure theory for the analysis and synthesis of compliant mechanisms [J]. ASME Journal of Mechanical Design, 1996,118(1):121 ~ 125.
- 8 Howell L L. Compliant mechanisms [M]. New York: John Wiley & Sons, 2001.
- 9 Winder B G, Magleby S P, Howell L L. A study of joints suitable for lamina emergent mechanisms [C] // Proceedings of the 2008 ASME, International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Paper No. DETC2008-49914, 2008, 2:339 ~ 349.
- 10 于靖军,宗光华,毕树生. 全柔性机构与 MEMS[J]. 光学精密工程,2001,9(1):1~5.
 Yu Jingjun, Zong Guanghua, Bi Shusheng. Fully compliant mechanisms and MEMS[J]. Optics and Precision Engineering,2001, 9(1):1~5.