DOI:10.6041/j.issn.1000-1298.2012.09.023

基于多种 UDF 方法的变桨距垂直轴风力机性能分析^{*}

张立勋'刘小红'张松'梁迎彬'杨勇2

(1. 哈尔滨工程大学机电工程学院,哈尔滨 150001; 2. 哈尔滨瑞哈科技发展有限公司,哈尔滨 150001)

【摘要】 为了提高垂直轴风力机的性能,针对变桨距垂直轴风力机,利用叶素理论求得叶片在不同方位桨距 角的变化规律,使叶片在各个不同位置升力系数达到最大;通过滑移网格、动网格、滑移网格动网格组合等动区域 方法的研究,实现了变桨距垂直轴风力机主动控制数值模拟方法的多元化;最终获得不同叶片各自产生的总力矩 和风能利用率。用垂直轴风力机的试验和模拟对比分析,验证了数值模拟结果的可靠性。结果表明,采用变桨控 制规律的垂直轴风力机,提高了风力机的风能利用率,尤其是在低尖速比情况下,很大程度上改善了风力机的起动 性能,尖速比为1.5、2.0、2.5时,相对定桨距风力机功率都增大90%左右。

关键词:变桨距 垂直轴风力机 风能利用率 用户定义函数中图分类号:TK83 文献标识码:A 文章编号:1000-1298(2012)09-0120-05

Performance Analysis of Variable-pitch Vertical Axis Wind Turbine Based on Various UDF Methods

Zhang Lixun¹ Liu Xiaohong¹ Zhang Song¹ Liang Yingbin¹ Yang Yong²

(1. Department of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China
 2. Harbin Reha Technology Devolopment Co., Ltd., Harbin 150001, China)

Abstract

In order to improve the performance of vertical axis wind turbine, the variable pitch vertical axis wind turbine (VAWT) was studied. The optimum pitch angles at different azimuth angles were calculated by the blade element theory to maximize the drive moment of blade at any position. After doing dynamic regional UDF (user-defined function) approach on sliding mesh, dynamic mesh and a combination of both, the diverse numerical simulation methods of active control for variable pitch vertical axis wind turbine were built. Finally, the total torque generated as well as the power coefficient were obtained. The reliability of numerical simulation was verified by comparative analysis between the experimental and simulation results about VAWT. The results indicated that the power coefficient of vertical axis wind turbine was improved by the method of variable pitch, especially in the case of low tip speed ratios (TSR), where the capability of self-starting was improved greatly. Compared with the fixed-pitch vertical axis wind turbine, the power was increased by about 90% at the tip speed ratio of 1.5, 2.0 and 2.5.

Key words Variable pitch, VAWT, Power coefficient, UDF

引言

风力发电作为一种清洁能源,越来越受到人们的关注。传统的定桨距垂直轴风力机,由于起动性

能差、效率低,很多研究者从计算流体力学(CFD)方 法和实验方面对其进行了研究。为了获得高效的风 力机性能,研究人员从雷诺数、密实度、尖速比或者 叶片开合结构等巧妙布局^[1-6]来研究,用滑移网格

收稿日期: 2011-08-26 修回日期: 2011-09-28

^{*}黑龙江省科技计划资助项目(TA09Q801)

作者简介:张立勋,教授,博士生导师,主要从事机电一体化研究,E-mail: lixunzhang2002@ yahoo. com. cn

解决了定桨距问题,而变桨距风力机采用动网格方 法容易使交界面网格变形导致计算失败。因此本文 从不改变网格拓扑性的动区域出发,系统研究解决 变桨距风力机数值模拟的多种用户定义函数 (UDF)方法,运用叶素模型获得的变桨距规律对风 力机的性能进行验证。

1 变桨距垂直轴风力机控制规律

垂直轴风力机参数如表 1 所示。叶片 A 起始 角位置与 X 轴重合,从 X 轴依次逆时针旋转 3 个叶 片相位差 90°,分别记做叶片 B、叶片 C、叶片 D,如 图 1 所示。图 1 表示叶片在尖速比 $\lambda = 2.0$ 时叶片 在不同方位桨距角变化和叶片受力情况。其中 θ 为 叶片的方位角, ω 为叶片旋转角速度, β 为桨距角。

表1 变桨距垂直轴风力机参数

Tab.1 Dimensions of variable-pitch

vertical axis wind turbine

参数	数值
叶轮展长 H/m	2
叶轮半径 R/m	2
叶片弦长 L/m	0.4
叶片数量 N	4
叶片翼型	NACA0015

该变桨规律是通过翼型 NACA0015 的升力阻力 系数,根据叶素理论模型^[7],求解垂直轴风力发电 机在一周每个方位角风力机的最大功率所对应的桨 距角。其他尖速比情况下的变桨规律如图 2 所示, 变桨距垂直轴风力机控制规律呈现关于 180°位置 近似对称。

2 垂直轴风力机的力学分析

针对垂直轴风力发电机工程中所关心的一系列 问题,如风能利用率、功率、力矩等,可由叶片所受的 力和力矩得到,如图1所示。其中受力方面,由流 体对叶片壁面的瞬时压力产生的力和剪切应力的分 解而得到叶片的各个方位的切向力和径向力。叶片

的切向力是风力机效率的主要来源,径向力则表现 为叶片瞬态的拉力或者压力。力矩方面,包括切向 力对回转轴的力矩与叶片对自转轴力矩之和。

对于垂直轴风力机工作在低速情况下,流体可 视为不可压流体,笛卡尔坐标系下其张量形式的流 体方程为

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_i} (\rho u_i) = 0 \tag{1}$$

$$\frac{\partial}{\partial t}(\rho u_i) + \frac{\partial}{\partial x_j}(\rho u_i u_j) = -\frac{\partial p}{\partial x_i} + \frac{\partial}{\partial x_j}(-\rho \,\overline{u}_i' \overline{u}_j') + \frac{\partial}{\partial x_j} \left[\mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} - \frac{2}{3} \delta_{ij} \frac{\partial u_l}{\partial x_l} \right) \right]$$
(2)

式中 $u_i p$ 速度、压力的时均值 μ 批性系数 $\rho \overline{u}_i \overline{u}_j -$ 雷诺应力项 ρ 流体密度

计算采用 RNG *k* - ε 模型,近壁面使用壁面函数法,具体方程参见文献[7]。

通过上述方程获得第 *i* 个单位展长叶片表面每 个网格面积 *A* 与压力 *F*_{*p*}乘积的力和粘滞力 *F*_{*s*},将其 分别在惯性坐标系下分解,再对分解量在第 *i* 个单 位展长叶片环面积分得到惯性坐标系下的水平力 *F*_{*x*}和垂直力 *F*_{*x*}

$$F_{x} = \sum \left(F_{p}A |_{x} + F_{v}|_{x} \right)$$
(3)

$$F_{y} = \sum \left(F_{p}A |_{y} + F_{v} |_{y} \right)$$
(4)

第*i*个单位展长叶片切向力 *F_{ii}*和径向力 *F_{ni}*分别为

$$\begin{bmatrix} F_{ii} \\ F_{ni} \end{bmatrix} = \begin{bmatrix} -\sin\left(\frac{2\pi}{T}t + \frac{\pi}{2}i\right) & \cos\left(\frac{2\pi}{T}t + \frac{\pi}{2}i\right) \\ \cos\left(\frac{2\pi}{T}t + \frac{\pi}{2}i\right) & \sin\left(\frac{2\pi}{T}t + \frac{\pi}{2}i\right) \end{bmatrix} \begin{bmatrix} F_x \\ F_y \end{bmatrix}$$

$$(i = 1, 2, 3, 4) \tag{5}$$

式中 T----周期

i——叶片序号,对应叶片初始位置A、B、C、D

第*i*个单位展长叶片的切向力系数 *C_u*、总力矩 *M_i*和力矩系数 *C_{Mi}*分别为

$$C_{ii} = \frac{F_{ii}}{0.5\rho v^2 L}$$
(6)

$$M_i = F_{ii}R + M_E \tag{7}$$

$$C_{M_i} = \frac{M_i}{0.5\rho v^2 DR} \tag{8}$$

式中 v——来流风速 D——风轮直径 单位展长4叶片总力矩 M_s和力矩时均值 M₆为

$$M_5 = \sum_{i=1}^{4} M_i$$
 (9)

$$\overline{M}_6 = \frac{1}{T} \int_0^T M_5 \mathrm{d}t \tag{10}$$

垂直轴风力机展长为H的总力矩M、功率P、风能利用率 C_p 和尖速比 λ 分别为

$$M = M_6 H \tag{11}$$

$$P = M\omega \tag{12}$$

$$C_{P} = \frac{P}{\rho v^{3} R H}$$
(13)

$$\lambda = \frac{\omega R}{v} \tag{14}$$

3 多连通域独立运动的 UDF 方法

经研究发现,对于主动控制的变桨距风力机,叶 片运动可通过多种 UDF 程序来实现。其中动网格 中的动边界方法无法保证网格的数量和质量,而其余 方法均可保证网格的拓扑性不变,具体如图 3 所示。 均可实现图 4 中包围叶片的 4 个圆域的公转和自转。

3 3 受朱理垂直袖风力机主动控制的 ODF 方法性感 Fig. 3 Different UDF methods of active control of variable-pitch VAWT

UDF 程序按照绝对运动还是相对运动而定,绝 对运动 UDF 的核心思想是通过叶片当前时间步长 的位置插值得到线速度,这种离散处理方法是出现 毛刺现象的根源,需通过快速傅里叶变换(FFT)滤 波处理去掉毛刺现象,如使用位置函数求导,时间步 长必须足够小。然后通过位置函数找到叶片自转的 当前位置,按照变桨距规律桨距角度插值得到当前 时间步长角速度,其值与环域角速度之和等于叶片 自转角速度。当前时间步长收敛后,计算跳到下一 时间步长,重新获取下一时间步长内的角速度,其过 程通过循环切换得到。

对于相对运动 UDF 程序,首先确定当前时间步 长的各个叶片的方位角,根据位置函数确定当前自 转中心,其大小仅由变桨距规律桨距角度的插值决 定,而公转和环形区域的定轴转动的叠加通过相对 运动的设置来解决,因而程序得到了简化,其他部分 和绝对运动 UDF 程序基本相同,相对运动的 UDF 程序的优势是不会出现自转中心不重合的现象,这 点 DEFINE_ZONE_MOTION (name, omega, axis, origin, velocity, time, dtime) 宏 尤 为 方 便,而 DEFINE_ADJUST (myadjust, domain) 宏需使用指针 变量找到运动边界。DEFINE_CG_MOTION (name, dt, cg_vel, cg_omega, time, dtime)则对处理复杂的 运动更有利。计算中采用 Message 宏监控叶片各个 时刻的位置。

验证计算的可靠性时,不论是采用哪种形式的 运动,结果提取思路均为通过式(3)~(14)的力学 分析,采用 FLUENT 软件的 DEFINE_EXECUTE_AT _END 宏获取叶片力和力矩,其核心思想均为通过 指针变量找到叶片 ID 号,并且通过 Compute_force_ And_Moment 宏来验证计算的准确性。

4 变桨距垂直轴风力机算例分析

4.1 前处理部分

研究采用2维计算模型,网格数量18万,流域 范围42m×20m。流体区域包括静止区域和运动 区域,区域之间通过交界面过渡,4个叶片和小圆一 起作公转自转运动,环形区域其他部分绕回转轴转 动,网格拓扑性和具体运动形式如图4所示。

4.2 求解器部分

计算采用雷诺平均 N-S 方程,为了模拟大攻 角分离流态,采用了非稳态计算,湍流模型为 RNG *k-s* 模型^[8]加标准壁面函数法,压力速度耦合采用 couple 算法。对流项离散格式为二阶迎风格式,扩 散项采用中心差分格式,本计算应用基于压力的隐 式方法。边界条件采用速度进口、压力出口和无滑 移壁面等条件,时间步长为 T/360,残差为 10⁻⁴。

4.3 数值模拟的试验验证

为了验证数值模拟计算的可靠性,对文献[3] 进行上述建模并进行了数值模拟,数值模拟与试验 结果对比如图5所示。

图 5 测试结果表明,当 Y⁺满足 30 左右,尖速比 大于 1.8 时试验值与模拟值比较吻合,最大误差为 3.8%,尖速比小时,由于壁面距离风力机过近,风能 利用率低,从而因试验测量误差致使两者误差较大。

4.4 结果分析

4.4.1 不同方位叶片力矩系数分析

当固定风速,固定转速,尖速比 $\lambda = 2.0$,风速 v = 10 m/s,角速度 $\omega = 10$ rad/s 时,由图 6 可知,定 桨距和变桨距风力机叶片力矩曲线均有 4 个波峰, 相邻叶片力矩系数时移 T/4 与相邻叶片初始位置偏 移 T/4 相补偿,故叶片的力矩大小仅与某时刻叶片 到达方位角有关,呈周期波动,而与叶片数无关。 图 6 中叶片 A 两力矩的主要贡献都来自上游盘面, 上游流体能量转化为机械能,到达下游风速降低,功 率与风速立方成正比,加上上游叶片和旋转轴的扰 动作用,使得下游盘面的可利用风能很小,可见风力 机上游盘面的风能利用是需要解决的主要问题。由 时间与方位角的折换关系可知,对于定桨距风力机, 力矩的主要贡献基本聚集在上游盘面方位角 124°~ 194°(约圆周的1/6),而变桨距力矩的主要贡献基 本聚集在上游盘面方位角 115°~270°(约圆周的

1/2),基本上整个上游盘面都得到很大改善,各个 叶片的力矩幅值变大,范围变宽,这是由于叶片适当 的摆角减少了流体的分离。图 6 中 *t* 为时间,*C*_M为 叶片力矩系数。从宏观来看,变浆距风力机性能改 善很大,具体见表 2。

表 2 风速 10 m/s时定桨距变桨距风力机效率

Tab. 2 Power coefficient between variable-pitch VAWT and fixed-pitch VAWT at a wind speed of 10 m/s

名称	尖速比	力矩时均值/N·m	效率/%
定桨距	2.0	97.4	19.8
变桨距	2.0	191.6	39.12

4.4.2 风能利用率随尖速比变化分析

尖速比 λ 为 1.0、1.5、2.0、2.5、3.0, 风速 v 为 10、8、12 m/s 时,风能利用率随尖速比的变化如图 7 所示。当风速一定时,角速度增加,尖速比增加,定 桨距和变桨距的风能利用率都表现为先增加后减 小,最大风能利用率发生在尖速比为2.5 左右。对 于定桨距桨距角0°~7°,尖速比小于1.5时,风能利 用率小于 0.1 且效率基本不变, 而提高尖速比风能 利用越大,定桨距最佳安装桨距角在3°左右;但是 变桨距风力机在低尖速比范围内(λ < 1.5)大大提 高了风能利用率,提高了垂直轴风力机的起动性 能^[9],尖速比在2.5 左右相对于定桨距风力机增加 幅度减小。当采用同一风力机布局,风速从8m/s 增加到12 m/s,不论是定桨距还是变桨距,风能利用 率随尖速比变化不大,这与翼型的低速特性相符,即 翼型失速前,当雷诺数增大到一定程度时,翼型变化 不大。此时对应弦长 0.4 m,风速在 8 m/s 左右。所 以此风速可作为该风力机的设计风速点。

4.4.3 尖速比固定时功率随风速的变化

当固定尖速比,同步改变风速和转速,尖速比 λ 为 1.5、2.0、2.5(3 组试验),风速 v 为 2、5、7、11、 14 m/s,角速度 ω 为 2、5、7、11、14 rad/s 时,尖速比 不论为1.5、2.0、2.5的哪种情况,风速增大,采用变 桨距控制规律的风力机功率相对定桨距风力机增加 越大,功率增大量级相对于定桨距基本都在90%左 右,具体如图8所示。当尖速比分别为1.5、2.0时, 风速增大,通过N-S非线性偏微分方程模拟结果 表明,定桨距风力机和变桨距风力机在雷诺数超过 15万后,风能利用率都基本不变,即此时功率曲线 与风速的三次方成正比。在尖速比为2.5时,变桨 距风力机和定桨距风力机效率达到稳定值的雷诺数 均增大,如图9所示。

Fig. 8 Power generation according to wind speed

从研究方法上来看,变桨距风力机不改变网格

拓扑性动区域数值模拟 UDF 方法的开发,为变桨距 风力机的研究提供了便利。垂直轴风力机数值模拟 和实验的结果论证了计算结果的可靠性。从仿真结 果来看,当风速 v = 10 m/s、尖速比λ = 2.0 时,变桨 距风力机在整个上游盘面力矩系数与定桨距相比, 幅值增大,范围变宽,风力机效率的增大主要来源于 风力机上游盘面的贡献;当风速一定,尖速比增大 时,采用变桨距控制的垂直轴风力机的风能利用率 得到较大提高,尤其是增加了风力机在低尖速比下 的风能利用率,提高了风力机的起动性能;尖速比不 论为1.5、2、0、2.5 的哪种情况,风速增大时,采用变 桨控制规律的垂直轴风力机相对定桨距风力机功率 增加越大,都在 90% 左右。

- 参考文献
- 1 Annil Rampartap, Rikhi Ramkissoon. Self-starting hybrid 'H' type wind turbine [C] // 2007 Proceedings of the ASME Energy Sustainability Conference, 2007:1139~1146.
- 2 In Seong Hwang, Seung Yong Min, In Oh Jeong, et al. Efficiency improvement of a new vertical axis wind turbine by individual active control of blade motion [C] // Smart Structures and Materials 2006: Smart Structures and Integrated Systems, Proceedings of SPIE 6173, 2006: 316 ~ 323.
- 3 Robert Howell, Ning Oin, Lonathan Edwards, et al. Wind tunnel and numerical study of a small vertical axis wind turbine [J]. Renewable Energy, 2010,35(2): 412 ~ 422.
- 4 Akiyoshi lida, Kelichi Kato, Akisato Izuno. Numerical simulation of unsteady flow and aerodynamic performance of vertical axis wind turbine with LES [C] // 16th Australasian Fluid Mechanics Conference (AFMC), 2007.
- 5 Kirke B K, Lazauskas L. Limitation of fixed pitch Darrieus hydrokinetic turbines and the challenge of variable pitch [J]. Renewable Energy, 2011,36(3):893 ~ 897.
- 6 孙科. 竖轴 H 型叶轮及导流罩流体动力性能数值模拟[D]. 哈尔滨:哈尔滨工程大学,2008. Sun Ke. Numerical simulation on fluid dynamic performance of H-shaped vertical axis turbine and duct [D]. Harbin: Harbin Engineering University, 2008. (in Chinese)
- 7 In Seong Hwang, Yun Han Lee, Seung Jo Kim. Optimization of cycloidal water turbine and the performance improvement by individual blade control [J]. Applied Energy, 2009,86(9):1532 ~1540.
- 8 Quahiba Guerri, Anas Sakout, Khedidja Bouhadef. Simulations of the fluid flow around a rotating vertical axis wind turbine [J]. Wind Engineering, 2007, 31(3):149 ~ 163.
- 9 Habtamu Beri, Yao Yingxue. Effect of camber airfoil on self starting of vertical axis wind turbine [J]. Journal of Environmental Science and Technology, 2011, 4(3):302 ~ 312.