基于CUDA的并行K-means聚类图像分割算法优化
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(61271280)和国家级大学生科技创新重点资助项目(201310712068)


CUDA-based Parallel K-means Clustering Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高K-means聚类算法的运算速度,基于CUDA架构提出一种分块、并行的K-means算法,并采用“合并访问”、“多级规约求和”、“负载均衡”和“指令优化”等策略优化并行算法。实验结果表明,并行K-means算法的分割效果与串行K-means算法相同,但运行速度得到了极大的提高,加速比最高达到560,很好地解决了农业工程实际中由于分割算法带来的瓶颈问题,能够极大地提高农业劳动生产率。

    Abstract:

    K-means clustering algorithm is an excellent algorithm which has been widely used in the image processing and data mining. However, the algorithm arouses a high computational complexity. This paper made a parallel analysis of K-means algorithm in detail, and proposed a partitioning and parallel K-means algorithm based on CUDA (Compute unified device architecture). In addition, some optimization strategies, e.g., coalesced memory access, parallel reduction, load balance and instruction optimization, were discussed to obtain the higher performance. Experimental results show that the parallel K-means algorithm achieves 560x speedup over the sequential C codes, while maintains the same effect. Hence it solves the bottleneck of the algorithm perfectly, which is an attractive alternative to the sequential K-means algorithm for image segmentation and clustering analysis.

    参考文献
    相似文献
    引证文献
引用本文

霍迎秋,秦仁波,邢彩燕,陈 曦,方 勇.基于CUDA的并行K-means聚类图像分割算法优化[J].农业机械学报,2014,45(11):47-53. Huo Yingqiu, Qin Renbo, Xing Caiyan, Chen Xi, Fang Yong. CUDA-based Parallel K-means Clustering Algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2014,45(11):47-53.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-05-07
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2014-11-10
  • 出版日期:
文章二维码