2025年4月7日 周一
基于BPSO的棉花异性纤维目标特征快速选择方法
基金项目:

国家自然科学基金资助项目(30971693)和新世纪优秀人才计划资助项目(NCET-09-0731)


A Fast Feature Selection for Cotton Foreign Fiber Objects Based on BPSO
Author:
  • 摘要
  • | |
  • 访问统计
  • | |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对现有棉花异性纤维目标特征选择方法迭代次数多、速度慢等问题,提出了一种基于改进粒子群优化算法的棉花异性纤维目标特征快速选择方法。使用离散型粒子群优化算法作为特征选择算法,利用支持向量机算法作为分类器对最优特征集进行验证。实验结果表明,在分类准确率与蚁群算法相当的情况下,能减少26%的运行时间。

    Abstract:

    A fast feature selection for cotton foreign fiber objects based on binary particle swarm optimization was presented, for the current feature selection of cotton foreign fiber having more iteration times and slow speed. Binary particle swarm optimization (BPSO) was used to select feature in the method, and the support vector machine algorithm was used to verify the optimal feature set. Experimental results showed that the running time could reduce by 26%, when the classification accuracy was almost with other algorithms.

    参考文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王金星,李恒斌,王蕊,刘双喜,曹维时,闫银发.基于BPSO的棉花异性纤维目标特征快速选择方法[J].农业机械学报,2013,44(2):188-191. Wang Jinxing, Li Hengbin, Wang Rui, Liu Shuangxi, Cao Weishi, Yan Yinfa. A Fast Feature Selection for Cotton Foreign Fiber Objects Based on BPSO[J]. Transactions of the Chinese Society for Agricultural Machinery,2013,44(2):188-191.

复制
分享
文章指标
  • 点击次数:4036
  • 下载次数: 2302
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2013-02-04
文章二维码